Dimitrios Sikeridis (The University of New Mexico), Panos Kampanakis (Cisco Systems), Michael Devetsikiotis (The University of New Mexico)

The potential development of large-scale quantum computers is raising concerns among IT and security research professionals due to their ability to solve (elliptic curve) discrete logarithm and integer factorization problems in polynomial time. There is, therefore, a threat to public-key cryptography as all the currently used algorithms would be deemed insecure in a post-quantum (PQ) setting. In response, the National Institute of Standards and Technology (NIST) has initiated a process to standardize quantum-resistant crypto algorithms, focusing primarily on their security guarantees. Since PQ algorithms present significant differences over classical ones, their overall assessment should not be performed out-of-context. This work presents a detailed performance evaluation of the NIST signature algorithm candidates and investigates the imposed latency on TLS 1.3 connection establishment under realistic network conditions. In addition, we investigate their impact on the achievable TLS session throughput of a server and analyze the trade-off between lengthier PQ signatures, and computationally heavier PQ cryptographic operations for idle and heavily loaded servers. Our results demonstrate that the adoption of at least two PQ signature algorithms would indeed be viable for time-sensitive applications over TLS with little additional overhead over current signature algorithms. Also, we argue that more of the NIST PQ candidates can effectively be used for less time-sensitive applications, and provide an in-depth discussion on the integration of PQ authentication in encrypted tunneling protocols, along with the related challenges, and alternatives. Finally, we propose and evaluate the combination of different PQ signature algorithms across the same certificate chain in TLS. Results show a reduction of the TLS handshake time and a significant increase of a server's TLS tunnel connection rate over the alternative of the chain using a single PQ signature scheme.

View More Papers

Not All Coverage Measurements Are Equal: Fuzzing by Coverage...

Yanhao Wang (Institute of Software, Chinese Academy of Sciences), Xiangkun Jia (Pennsylvania State University), Yuwei Liu (Institute of Software, Chinese Academy of Sciences), Kyle Zeng (Arizona State University), Tiffany Bao (Arizona State University), Dinghao Wu (Pennsylvania State University), Purui Su (Institute of Software, Chinese Academy of Sciences)

Read More

OmegaLog: High-Fidelity Attack Investigation via Transparent Multi-layer Log Analysis

Wajih Ul Hassan (University of Illinois Urbana-Champaign), Mohammad A. Noureddine (University of Illinois Urbana-Champaign), Pubali Datta (University of Illinois Urbana-Champaign), Adam Bates (University of Illinois Urbana-Champaign)

Read More

Finding Safety in Numbers with Secure Allegation Escrows

Venkat Arun (Massachusetts Institute of Technology), Aniket Kate (Purdue University), Deepak Garg (Max Planck Institute for Software Systems), Peter Druschel (Max Planck Institute for Software Systems), Bobby Bhattacharjee (University of Maryland)

Read More

Decentralized Control: A Case Study of Russia

Reethika Ramesh (University of Michigan), Ram Sundara Raman (University of Michgan), Matthew Bernhard (University of Michigan), Victor Ongkowijaya (University of Michigan), Leonid Evdokimov (Independent), Anne Edmundson (Independent), Steven Sprecher (University of Michigan), Muhammad Ikram (Macquarie University), Roya Ensafi (University of Michigan)

Read More