Aydin Abadi (Newcastle University), Vishnu Asutosh Dasu (Pennsylvania State University), Sumanta Sarkar (University of Warwick)

Deduplication is a vital preprocessing step that enhances machine learning model performance and saves training time and energy. However, enhancing federated learning through deduplication poses challenges, especially regarding scalability and potential privacy violations if deduplication involves sharing all clients' data. In this paper, we address the problem of deduplication in a federated setup by introducing a pioneering protocol, Efficient Privacy-Preserving Multi-Party Deduplication (EP-MPD). It efficiently removes duplicates from multiple clients' datasets without compromising data privacy. EP-MPD is constructed in a modular fashion, utilizing two novel variants of the Private Set Intersection protocol. Our extensive experiments demonstrate the significant benefits of deduplication in federated learning of large language models. For instance, we observe up to 19.62% improvement in perplexity and up to 27.95% reduction in running time while varying the duplication level between 10% and 30%. EP-MPD effectively balances privacy and performance in federated learning, making it a valuable solution for large-scale applications.

View More Papers

Work-in-Progress: Detecting Browser-in-the-Browser Attacks from Their Behaviors and DOM...

Ryusei Ishikawa, Soramichi Akiyama, and Tetsutaro Uehara (Ritsumeikan University)

Read More

Eclipse Attacks on Monero's Peer-to-Peer Network

Ruisheng Shi (Beijing University of Posts and Telecommunications), Zhiyuan Peng (Beijing University of Posts and Telecommunications), Lina Lan (Beijing University of Posts and Telecommunications), Yulian Ge (Beijing University of Posts and Telecommunications), Peng Liu (Penn State University), Qin Wang (CSIRO Data61), Juan Wang (Wuhan University)

Read More

LAMP: Lightweight Approaches for Latency Minimization in Mixnets with...

Mahdi Rahimi (KU Leuven), Piyush Kumar Sharma (University of Michigan), Claudia Diaz (KU Leuven)

Read More