Asbat El Khairi (University of Twente), Marco Caselli (Siemens AG), Andreas Peter (University of Oldenburg), Andrea Continella (University of Twente)

Despite its detection capabilities against previously unseen threats, anomaly detection suffers from critical limitations, which often prevent its deployment in real-world settings. In fact, anomaly-based intrusion detection systems rely on comprehensive pre-established baselines for effectively identifying suspicious activities. Unfortunately, prior research showed that these baselines age and gradually lose their effectiveness over time, especially in dynamic deployments such as microservices-based environments, where the concept of “normality” is frequently redefined due to shifting operational conditions. This scenario reinforces the need for periodic retraining to uphold optimal performance — a process that proves challenging, particularly in the context of security applications.

We propose a novel, training-less approach to monitoring microservices-based environments. Our system, REPLICAWATCHER, observes the behavior of identical container instances (i.e., replicas) and detects anomalies without requiring prior training. Our key insight is that replicas, adopted for fault tolerance or scalability reasons, execute analogous tasks and exhibit similar behavioral patterns, which allow anomalous containers to stand out as a notable deviation from their corresponding replicas, thereby serving as a crucial indicator of security threats. The results of our experimental evaluation show that our approach is resilient against normality shifts and maintains its effectiveness without the necessity for retraining. Besides, despite not relying on a training phase, REPLICAWATCHER performs comparably to state-of-the-art, training-based solutions, achieving an average precision of 91.08% and recall of 98.35%.

View More Papers

AnonPSI: An Anonymity Assessment Framework for PSI

Bo Jiang (TikTok Inc.), Jian Du (TikTok Inc.), Qiang Yan (TikTok Inc.)

Read More

Eavesdropping on Black-box Mobile Devices via Audio Amplifier's EMR

Huiling Chen (College of Computer Science and Electronic Engineering, Hunan University, Changsha, China), Wenqiang Jin (College of Computer Science and Electronic Engineering, Hunan University, Changsha, China), Yupeng Hu (College of Computer Science and Electronic Engineering, Hunan University, Changsha, China), Zhenyu Ning (College of Computer Science and Electronic Engineering, Hunan University, Changsha, China), Kenli Li (College…

Read More

SSL-WM: A Black-Box Watermarking Approach for Encoders Pre-trained by...

Peizhuo Lv (Institute of Information Engineering, Chinese Academy of Sciences, China; School of Cyber Security, University of Chinese Academy of Sciences, China), Pan Li (Institute of Information Engineering, Chinese Academy of Sciences, China; School of Cyber Security, University of Chinese Academy of Sciences, China), Shenchen Zhu (Institute of Information Engineering, Chinese Academy of Sciences, China;…

Read More