Wentao Dong (City University of Hong Kong), Peipei Jiang (Wuhan University; City University of Hong Kong), Huayi Duan (ETH Zurich), Cong Wang (City University of Hong Kong), Lingchen Zhao (Wuhan University), Qian Wang (Wuhan University)

Anonymous broadcast systems, which allow users to post messages on a public bulletin board without revealing their identities, have been of persistent interest over the years.
Recent designs utilizing multi-party computation (MPC) techniques have shown competitive computational efficiency (CCS'20, NDSS'22, PETS'23).
However, these systems still fall short in communication overhead, which also dominates the overall performance.
Besides, they fail to adequately address threats from misbehaving users, such as repeatedly spamming the system with inappropriate, illegal content.
These tangible issues usually undermine the practical adoption of anonymous systems.

This work introduces _Gyges_, an MPC-based anonymous broadcast system that minimizes its inter-server communication while reconciling critical anonymity and accountability guarantees.
At the crux of _Gyges_ lies an honest-majority four-party secret-shared relay.
These relay parties jointly execute two key protocols: 1) a "silent shuffling" protocol that requires no online communication but relies solely on non-interactive, local computations to unlink users from their messages, thereby ensuring sender anonymity; 2) a companion fast and lean tracing protocol capable of relinking a specific shuffled message back to its originator when the content severely violates moderation policy, without jeopardizing others' anonymity guarantees.
Additionally, _Gyges_ adheres to the private robustness to resist potential malicious disruptions, guaranteeing output delivery while preserving sender anonymity.
To better support a large user base, the system also supports both vertical and horizontal scaling.
Our evaluation results show that _Gyges_'s communication-efficient shuffle designs outperform state-of-the-art MPC-based anonymous broadcast solutions, such as Clarion (NDSS'22) and RPM (PETS'23), while its shared trace technique can swiftly track down the misbehaving users (when necessary), giving orders of magnitude cost reductions compared to traceable mixnets (PETS'24) that offers similar capabilities.

View More Papers

LeoCommon – A Ground Station Observatory Network for LEO...

Eric Jedermann, Martin Böh (University of Kaiserslautern), Martin Strohmeier (armasuisse Science & Technology), Vincent Lenders (Cyber-Defence Campus, armasuisse Science & Technology), Jens Schmitt (University of Kaiserslautern)

Read More

Evaluating LLMs Towards Automated Assessment of Privacy Policy Understandability

Keika Mori (Deloitte Tohmatsu Cyber LLC, Waseda University), Daiki Ito (Deloitte Tohmatsu Cyber LLC), Takumi Fukunaga (Deloitte Tohmatsu Cyber LLC), Takuya Watanabe (Deloitte Tohmatsu Cyber LLC), Yuta Takata (Deloitte Tohmatsu Cyber LLC), Masaki Kamizono (Deloitte Tohmatsu Cyber LLC), Tatsuya Mori (Waseda University, NICT, RIKEN AIP)

Read More

Too Subtle to Notice: Investigating Executable Stack Issues in...

Hengkai Ye (The Pennsylvania State University), Hong Hu (The Pennsylvania State University)

Read More

Dissecting Payload-based Transaction Phishing on Ethereum

Zhuo Chen (Zhejiang University), Yufeng Hu (Zhejiang University), Bowen He (Zhejiang University), Dong Luo (Zhejiang University), Lei Wu (Zhejiang University), Yajin Zhou (Zhejiang University)

Read More