Baltasar Dinis (Instituto Superior Técnico (IST-ULisboa) / INESC-ID / MPI-SWS), Peter Druschel (MPI-SWS), Rodrigo Rodrigues (Instituto Superior Técnico (IST-ULisboa) / INESC-ID)

Trusted Execution Environments (TEEs) ensure the confidentiality and integrity of computations in hardware. Subject to the TEE's threat model, the hardware shields a computation from most externally induced fault behavior except crashes. As a result, a crash-fault tolerant (CFT) replication protocol should be sufficient when replicating trusted code inside TEEs. However, TEEs do not provide efficient and general means of ensuring the freshness of external, persistent state. Therefore, CFT replication is insufficient for TEE computations with external state, as this state could be rolled back to an earlier version when a TEE restarts. Furthermore, using BFT protocols in this setting is too conservative, because these protocols are designed to tolerate arbitrary behavior, not just rollback during a restart.

In this paper, we propose the restart-rollback (RR) fault model for replicating TEEs, which precisely captures the possible fault behaviors of TEEs with external state. Then, we show that existing replication protocols can be easily adapted to this fault model with few changes, while retaining their original performance. We adapted two widely used crash fault tolerant protocols - the ABD read/write register protocol and the Paxos consensus protocol - to the RR model. Furthermore, we leverage these protocols to build a replicated metadata service called emph{TEEMS}, and then show that it can be used to add TEE-grade confidentiality, integrity, and freshness to untrusted cloud storage services. Our evaluation shows that our protocols perform significantly better than their BFT counterparts (between $1.25$ and $55times$ better throughput), while performing identically to the CFT versions, which do not protect against rollback attacks.

View More Papers

Death By A Thousand COTS: Disrupting Satellite Communications using...

Frederick Rawlins, Richard Baker and Ivan Martinovic (University of Oxford) Presenter: Frederick Rawlins

Read More

Security Awareness Training through Experiencing the Adversarial Mindset

Jens Christian Dalgaard, Niek A. Janssen, Oksana Kulyuk, Carsten Schurmann (IT University of Copenhagen)

Read More

OptRand: Optimistically Responsive Reconfigurable Distributed Randomness

Adithya Bhat (Purdue University), Nibesh Shrestha (Rochester Institute of Technology), Aniket Kate (Purdue University), Kartik Nayak (Duke University)

Read More

How to Count Bots in Longitudinal Datasets of IP...

Leon Böck (Technische Universität Darmstadt), Dave Levin (University of Maryland), Ramakrishna Padmanabhan (CAIDA), Christian Doerr (Hasso Plattner Institute), Max Mühlhäuser (Technical University of Darmstadt)

Read More