Marzieh Bitaab (Arizona State University), Alireza Karimi (Arizona State University), Zhuoer Lyu (Arizona State University), Adam Oest (Amazon), Dhruv Kuchhal (Amazon), Muhammad Saad (X Corp.), Gail-Joon Ahn (Arizona State University), Ruoyu Wang (Arizona State University), Tiffany Bao (Arizona State University), Yan Shoshitaishvili (Arizona State University), Adam Doupé (Arizona State University)

In an evolving digital environment under perpetual threat from cybercriminals, phishing remains a predominant concern. However, there is a shift towards fraudulent shopping websites---fraudulent websites offering bogus products or services while mirroring the user experience of legitimate shopping websites. A key open question is how important fraudulent shopping websites in the cybercrime ecosystem are?

This study introduces a novel approach to detecting and analyzing fraudulent shopping websites through large-scale analysis and collaboration with industry partners. We present ScamMagnifier, a framework that collected and analyzed 1,155,237 shopping domains from May 2023 to June 2024, identifying 46,746 fraudulent websites. Our automated checkout process completed 41,863 transactions, revealing 5,278 merchant IDs associated with these scams. The collaborative investigations with one of major financial institutions also confirmed our findings and provided additional insights, linking 14,394 domains to these fraudulent merchants. In addition, we introduce a Chromium web extension to alert users of potential fraudulent shopping websites. This study contributes to a better understanding of e-Commerce fraud and provides valuable insights for developing more effective defenses against these evolving threats.

View More Papers

Cross-Origin Web Attacks via HTTP/2 Server Push and Signed...

Pinji Chen (Tsinghua University), Jianjun Chen (Tsinghua University & Zhongguancun Laboratory), Mingming Zhang (Zhongguancun Laboratory), Qi Wang (Tsinghua University), Yiming Zhang (Tsinghua University), Mingwei Xu (Tsinghua University), Haixin Duan (Tsinghua University)

Read More

Careful About What App Promotion Ads Recommend! Detecting and...

Shang Ma (University of Notre Dame), Chaoran Chen (University of Notre Dame), Shao Yang (Case Western Reserve University), Shifu Hou (University of Notre Dame), Toby Jia-Jun Li (University of Notre Dame), Xusheng Xiao (Arizona State University), Tao Xie (Peking University), Yanfang Ye (University of Notre Dame)

Read More

I Know What You Asked: Prompt Leakage via KV-Cache...

Guanlong Wu (Southern University of Science and Technology), Zheng Zhang (ByteDance Inc.), Yao Zhang (ByteDance Inc.), Weili Wang (Southern University of Science and Technolog), Jianyu Niu (Southern University of Science and Technolog), Ye Wu (ByteDance Inc.), Yinqian Zhang (Southern University of Science and Technology (SUSTech))

Read More

Recurrent Private Set Intersection for Unbalanced Databases with Cuckoo...

Eduardo Chielle (New York University Abu Dhabi), Michail Maniatakos (New York University Abu Dhabi)

Read More