Peizhuo Lv (Institute of Information Engineering, Chinese Academy of Sciences, China; School of Cyber Security, University of Chinese Academy of Sciences, China), Pan Li (Institute of Information Engineering, Chinese Academy of Sciences, China; School of Cyber Security, University of Chinese Academy of Sciences, China), Shenchen Zhu (Institute of Information Engineering, Chinese Academy of Sciences, China;…

Recent years have witnessed tremendous success in Self-Supervised Learning (SSL), which has been widely utilized to facilitate various downstream tasks in Computer Vision (CV) and Natural Language Processing (NLP) domains. However, attackers may steal such SSL models and commercialize them for profit, making it crucial to verify the ownership of the SSL models. Most existing ownership protection solutions (e.g., backdoor-based watermarks) are designed for supervised learning models and cannot be used directly since they require that the models' downstream tasks and target labels be known and available during watermark embedding, which is not always possible in the domain of SSL. To address such a problem, especially when downstream tasks are diverse and unknown during watermark embedding, we propose a novel black-box watermarking solution, named SSL-WM, for verifying the ownership of SSL models. SSL-WM maps watermarked inputs of the protected encoders into an invariant representation space, which causes any downstream classifier to produce expected behavior, thus allowing the detection of embedded watermarks. We evaluate SSL-WM on numerous tasks, such as CV and NLP, using different SSL models both contrastive-based and generative-based. Experimental results demonstrate that SSL-WM can effectively verify the ownership of stolen SSL models in various downstream tasks. Furthermore, SSL-WM is robust against model fine-tuning, pruning, and input preprocessing attacks. Lastly, SSL-WM can also evade detection from evaluated watermark detection approaches, demonstrating its promising application in protecting the ownership of SSL models.

View More Papers

EnclaveFuzz: Finding Vulnerabilities in SGX Applications

Liheng Chen (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyber Security, University of Chinese Academy of Sciences; Institute for Network Science and Cyberspace of Tsinghua University), Zheming Li (Institute for Network Science and Cyberspace of Tsinghua University), Zheyu Ma (Institute for Network Science and Cyberspace of Tsinghua University), Yuan Li (Tsinghua University),…

Read More

WIP: A Trust Assessment Method for In-Vehicular Networks using...

Artur Hermann, Natasa Trkulja (Ulm University - Institute of Distributed Systems), Anderson Ramon Ferraz de Lucena, Alexander Kiening (DENSO AUTOMOTIVE Deutschland GmbH), Ana Petrovska (Huawei Technologies), Frank Kargl (Ulm University - Institute of Distributed Systems)

Read More

Exploring Phishing Threats through QR Codes in Naturalistic Settings

Filipo Sharevski (DePaul University), Mattia Mossano, Maxime Fabian Veit, Gunther Schiefer, Melanie Volkamer (Karlsruhe Institute of Technology)

Read More

Faults in Our Bus: Novel Bus Fault Attack to...

Nimish Mishra (Department of Computer Science and Engineering, IIT Kharagpur), Anirban Chakraborty (Department of Computer Science and Engineering, IIT Kharagpur), Debdeep Mukhopadhyay (Department of Computer Science and Engineering, IIT Kharagpur)

Read More