Ke Sun (University of California San Diego), Chunyu Xia (University of California San Diego), Songlin Xu (University of California San Diego), Xinyu Zhang (University of California San Diego)

Voice User Interfaces (VUIs) are becoming an indispensable module that enables hands-free interaction between human users and smartphones. Unfortunately, recent research revealed a side channel that allows zero-permission motion sensors to eavesdrop on the VUI voices from the co-located smartphone loudspeaker. Nonetheless, these threats are limited to leaking a small set of digits and hot words. In this paper, we propose StealthyIMU, a new threat that uses motion sensors to steal permission-protected private information from the VUIs. We develop a set of efficient models to detect and extract private information, taking advantage of the deterministic structures in the VUI responses. Our experiments show that StealthyIMU can steal private information from 23 types of frequently-used voice commands to acquire contacts, search history, calendar, home address, and even GPS trace with high accuracy. We further propose effective mechanisms to defend against StealthyIMU without noticeably impacting the user experience.

View More Papers

Security Awareness Training through Experiencing the Adversarial Mindset

Jens Christian Dalgaard, Niek A. Janssen, Oksana Kulyuk, Carsten Schurmann (IT University of Copenhagen)

Read More

ChargePrint: A Framework for Internet-Scale Discovery and Security Analysis...

Tony Nasr (Concordia University), Sadegh Torabi (George Mason University), Elias Bou-Harb (University of Texas at San Antonio), Claude Fachkha (University of Dubai), Chadi Assi (Concordia University)

Read More

How to Count Bots in Longitudinal Datasets of IP...

Leon Böck (Technische Universität Darmstadt), Dave Levin (University of Maryland), Ramakrishna Padmanabhan (CAIDA), Christian Doerr (Hasso Plattner Institute), Max Mühlhäuser (Technical University of Darmstadt)

Read More