Ke Sun (University of California San Diego), Chunyu Xia (University of California San Diego), Songlin Xu (University of California San Diego), Xinyu Zhang (University of California San Diego)

Voice User Interfaces (VUIs) are becoming an indispensable module that enables hands-free interaction between human users and smartphones. Unfortunately, recent research revealed a side channel that allows zero-permission motion sensors to eavesdrop on the VUI voices from the co-located smartphone loudspeaker. Nonetheless, these threats are limited to leaking a small set of digits and hot words. In this paper, we propose StealthyIMU, a new threat that uses motion sensors to steal permission-protected private information from the VUIs. We develop a set of efficient models to detect and extract private information, taking advantage of the deterministic structures in the VUI responses. Our experiments show that StealthyIMU can steal private information from 23 types of frequently-used voice commands to acquire contacts, search history, calendar, home address, and even GPS trace with high accuracy. We further propose effective mechanisms to defend against StealthyIMU without noticeably impacting the user experience.

View More Papers

Accurate Compiler and Optimization Independent Function Identification Using Program...

Derrick McKee (Purdue University), Nathan Burow (MIT Lincoln Laboratory), Mathias Payer (EPFL)

Read More

Semi-Automated Synthesis of Driving Rules

Diego Ortiz, Leilani Gilpin, Alvaro A. Cardenas (University of California, Santa Cruz)

Read More

Tactics, Threats & Targets: Modeling Disinformation and its Mitigation

Shujaat Mirza (New York University), Labeeba Begum (New York University Abu Dhabi), Liang Niu (New York University), Sarah Pardo (New York University Abu Dhabi), Azza Abouzied (New York University Abu Dhabi), Paolo Papotti (EURECOM), Christina Pöpper (New York University Abu Dhabi)

Read More