Frank Capobianco (The Pennsylvania State University), Quan Zhou (The Pennsylvania State University), Aditya Basu (The Pennsylvania State University), Trent Jaeger (The Pennsylvania State University, University of California, Riverside), Danfeng Zhang (The Pennsylvania State University, Duke University)

Correct access control enforcement is a critical foundation for data security. The reference monitor is the key component for enforcing access control, which is supposed to provide tamperproof mediation of all security-sensitive operations. Since reference monitors are often deployed in complex software handling a wide variety of operation requests, such as operating systems and server programs, a question is whether reference monitor implementations may have flaws that prevent them from achieving these requirements. In the past, automated analyses detected flaws in complete mediation. However, researchers have not yet developed methods to detect flaws that may tamper with the reference monitor, despite the many vulnerabilities found in such programs. In this paper, we develop TALISMAN, an automated analysis for detecting flaws that may tamper the execution of reference monitor implementations. At its core, TALISMAN implements a precise information flow integrity analysis to detect violations that may tamper the construction of authorization queries. TALISMAN applies a new, relaxed variant of noninterference that eliminates several spurious implicit flow violations. TALISMAN also provides a means to vet expected uses of untrusted data in authorization using endorsement. We apply TALISMAN on three reference monitor implementations used in the Linux Security Modules framework, SELinux, AppArmor, and Tomoyo, verifying 80% of the arguments in authorization queries generated by these LSMs. Using TALISMAN, we also found vulnerabilities in how pathnames are used in authorization by Tomoyo and AppArmor allowing adversaries to circumvent authorization. TALISMAN shows that tamper analysis of reference monitor implementations can automatically verify many cases and also enable the detection of critical flaws.

View More Papers

Exploring the Influence of Prompts in LLMs for Security-Related...

Weiheng Bai (University of Minnesota), Qiushi Wu (IBM Research), Kefu Wu, Kangjie Lu (University of Minnesota)

Read More

On the Vulnerability of Traffic Light Recognition Systems to...

Sri Hrushikesh Varma Bhupathiraju (University of Florida), Takami Sato (University of California, Irvine), Michael Clifford (Toyota Info Labs), Takeshi Sugawara (The University of Electro-Communications), Qi Alfred Chen (University of California, Irvine), Sara Rampazzi (University of Florida)

Read More

CAGE: Complementing Arm CCA with GPU Extensions

Chenxu Wang (Southern University of Science and Technology (SUSTech) and The Hong Kong Polytechnic University), Fengwei Zhang (Southern University of Science and Technology (SUSTech)), Yunjie Deng (Southern University of Science and Technology (SUSTech)), Kevin Leach (Vanderbilt University), Jiannong Cao (The Hong Kong Polytechnic University), Zhenyu Ning (Hunan University), Shoumeng Yan (Ant Group), Zhengyu He (Ant…

Read More

Phoenix: Surviving Unpatched Vulnerabilities via Accurate and Efficient Filtering...

Hugo Kermabon-Bobinnec (Concordia University), Yosr Jarraya (Ericsson Security Research), Lingyu Wang (Concordia University), Suryadipta Majumdar (Concordia University), Makan Pourzandi (Ericsson Security Research)

Read More