Joongyum Kim (KAIST), Jung-hwan Park (KAIST), Sooel Son (KAIST)

Mobile ad fraud is a significant threat that victimizes app publishers and their users, thereby undermining the ecosystem of app markets. Prior works on detecting mobile ad fraud have focused on constructing predefined test scenarios that preclude user involvement in identifying ad fraud. However, due to their dependence on contextual testing environments, these works have neglected to track which app modules and which user interactions are responsible for observed ad fraud.

To address these shortcomings, this paper presents the design and implementation of FraudDetective, a dynamic testing framework that identifies ad fraud activities. FraudDetective focuses on identifying fraudulent activities that originate without any user interactions. FraudDetective computes a full stack trace from an observed ad fraud activity to a user event by connecting fragmented multiple stack traces, thus generating the causal relationships between user inputs and the observed fraudulent activity. We revised an Android Open Source Project (AOSP) to emit detected ad fraud activities along with their full stack traces, which help pinpoint the app modules responsible for the observed fraud activities. We evaluate FraudDetective on 48,172 apps from Google Play Store. FraudDetective reports that 74 apps are responsible for 34,453 ad fraud activities and find that 98.6% of the fraudulent behaviors originate from embedded third-party ad libraries. Our evaluation demonstrates that FraudDetective is capable of accurately identifying ad fraud via reasoning based on observed suspicious behaviors without user interactions. The experimental results also yield the new insight that abusive ad service providers harness their ad libraries to actively engage in committing ad fraud.

View More Papers

GALA: Greedy ComputAtion for Linear Algebra in Privacy-Preserved Neural...

Qiao Zhang (Old Dominion University), Chunsheng Xin (Old Dominion University), Hongyi Wu (Old Dominion University)

Read More

RandRunner: Distributed Randomness from Trapdoor VDFs with Strong Uniqueness

Philipp Schindler (SBA Research), Aljosha Judmayer (SBA Research), Markus Hittmeir (SBA Research), Nicholas Stifter (SBA Research, TU Wien), Edgar Weippl (Universität Wien)

Read More

Bringing Balance to the Force: Dynamic Analysis of the...

Abdallah Dawoud (CISPA Helmholtz Center for Information Security), Sven Bugiel (CISPA Helmholtz Center for Information Security)

Read More

Practical Non-Interactive Searchable Encryption with Forward and Backward Privacy

Shi-Feng Sun (Monash University, Australia), Ron Steinfeld (Monash University, Australia), Shangqi Lai (Monash University, Australia), Xingliang Yuan (Monash University, Australia), Amin Sakzad (Monash University, Australia), Joseph Liu (Monash University, Australia), ‪Surya Nepal‬ (Data61, CSIRO, Australia), Dawu Gu (Shanghai Jiao Tong University, China)

Read More