Changming Liu (Northeastern University), Yaohui Chen (Facebook Inc.), Long Lu (Northeastern University)

Undefined Behavior bugs (UB) often refer to a wide range of programming errors that mainly reside in software implemented in relatively low-level programming languages e.g., C/C++. OS kernels are particularly plagued by UB due to their close interactions with the hardware. A triggered UB can often lead to exploitation from unprivileged userspace programs and cause critical security and reliability issues inside the OS. The previous works on detecting UB in kernels had to sacrifice precision for scalability, and in turn, suffered from extremely high false positives which severely impaired their usability.

We propose a novel static UB detector for Linux kernel, called KUBO which simultaneously achieves high precision and whole-kernel scalability. KUBO is focused on detecting critical UB that can be triggered by userspace input. The high precision comes from KUBO’s verification of the satisfiability of the UB-triggering paths and conditions. The whole-kernel scalability is enabled by an efficient inter-procedural analysis, which incrementally walks backward along callchains in an on-demand manner. We evaluate KUBO on several versions of whole Linux kernels (including drivers). KUBO found 23 critical UBs that were previously unknown in the latest Linux kernel. KUBO’s false detection rate is merely 27.5%, which is significantly lower than that of the state-of-the-art kernel UB detectors (91%). Our evaluation also shows the bug reports generated by KUBO are easy to triage.

View More Papers

SquirRL: Automating Attack Analysis on Blockchain Incentive Mechanisms with...

Charlie Hou (CMU, IC3), Mingxun Zhou (Peking University), Yan Ji (Cornell Tech, IC3), Phil Daian (Cornell Tech, IC3), Florian Tramèr (Stanford University), Giulia Fanti (CMU, IC3), Ari Juels (Cornell Tech, IC3)

Read More

A Devil of a Time: How Vulnerable is NTP...

Yarin Perry (The Hebrew University of Jerusalem), Neta Rozen-Schiff (The Hebrew University of Jerusalem), Michael Schapira (The Hebrew University of Jerusalem)

Read More

RandRunner: Distributed Randomness from Trapdoor VDFs with Strong Uniqueness

Philipp Schindler (SBA Research), Aljosha Judmayer (SBA Research), Markus Hittmeir (SBA Research), Nicholas Stifter (SBA Research, TU Wien), Edgar Weippl (Universität Wien)

Read More

Data Analytics and Expert Judgment in Time of Crisis:...

Igor Linkov, PhD Senior Science and Technology Manager, US Army Engineer Research and Development Center; Senior Data Analyst (on detail), FEMA/HHS R1 COVID Task Force; Adjunct Professor, Carnegie Mellon University

Read More