To make their services more user friendly, online social-media platforms automatically identify text that corresponds to URLs and render it as clickable links.

In this paper, we show that the techniques used by such services to recognize URLs are often too permissive and can result in unintended URLs being displayed in social network messages. Among others, we show that popular platforms (such as Twitter) will render text as a clickable URL if a user forgets a space after a full stop as the end of a sentence, and the first word of the next sentence happens to be a valid Top Level Domain. Attackers can take advantage of these unintended URLs by registering the corresponding domains and exposing millions of Twitter users to arbitrary malicious content. To characterize the threat that unintended URLs pose to social-media users, we perform a large-scale study of unintended URLs in tweets over a period of 7 months. By designing a classifier capable of differentiating between intended and unintended URLs posted in tweets, we find more than 26K unintended URLs posted by accounts with tens of millions of followers. As part of our study, we also register 45 unintended domains and quantify the traffic that attackers can get by merely registering the right domains at the right time. Finally, due to the severity of our findings, we propose a lightweight browser extension which can, on the fly, analyze the tweets that users compose and alert them of potentially unintended URLs and raise a warning, allowing users to fix their mistake before the tweet is posted.

View More Papers

Why Do Programmers Do What They Do? A Theory...

Lavanya Sajwan, James Noble, Craig Anslow (Victoria University of Wellington), Robert Biddle (Carleton University)

Read More

Zoom on the Keystrokes: Exploiting Video Calls for Keystroke...

Mohd Sabra (University of Texas at San Antonio), Anindya Maiti (University of Oklahoma), Murtuza Jadliwala (University of Texas at San...

Read More

POP and PUSH: Demystifying and Defending against (Mach) Port-oriented...

Min Zheng (Orion Security Lab, Alibaba Group), Xiaolong Bai (Orion Security Lab, Alibaba Group), Yajin Zhou (Zhejiang University), Chao Zhang...

Read More

Screen Gleaning: A Screen Reading TEMPEST Attack on Mobile...

Zhuoran Liu (Radboud university), Niels Samwel (Radboud University), Léo Weissbart (Radboud University), Zhengyu Zhao (Radboud University), Dirk Lauret (Radboud University),...

Read More