Yun Shen (NortonLifeLock Research Group), Pierre-Antoine Vervier (NortonLifeLock Research Group), Gianluca Stringhini (Boston University)

Mobile phones enable the collection of a wealth of private information, from unique identifiers (e.g., email addresses), to a user’s location, to their text messages. This information can be harvested by apps and sent to third parties, which can use it for a variety of purposes. In this paper we perform the largest study of private information collection (PIC) on Android to date. Leveraging an anonymized dataset collected from the customers of a popular mobile security product, we analyze the flows of sensitive information generated by 2.1M unique apps installed by 17.3M users over a period of 21 months between 2018 and 2019. We find that 87.2% of all devices send private information to at least five different domains, and that actors active in different regions (e.g., Asia compared to Europe) are interested in collecting different types of information. The United States (62% of the total) and China (7% of total flows) are the countries that collect most private information. Our findings raise issues regarding data regulation, and would encourage policymakers to further regulate how private information is used by and shared among the companies and how accountability can be truly guaranteed.

View More Papers

Deceptive Deletions for Protecting Withdrawn Posts on Social Media...

Mohsen Minaei (Visa Research), S Chandra Mouli (Purdue University), Mainack Mondal (IIT Kharagpur), Bruno Ribeiro (Purdue University), Aniket Kate (Purdue University)

Read More

Does Every Second Count? Time-based Evolution of Malware Behavior...

Alexander Küchler (Fraunhofer AISEC), Alessandro Mantovani (EURECOM), Yufei Han (NortonLifeLock Research Group), Leyla Bilge (NortonLifeLock Research Group), Davide Balzarotti (EURECOM)

Read More

Location Data and COVID-19 Contact Tracing: How Data Privacy...

Callie Monroe, Faiza Tazi, Sanchari Das (university of Denver)

Read More

Short Paper: Declarative Demand-Driven Reverse Engineering

Yihao Sun, Jeffrey Ching, Kristopher Micinski (Department of Electical Engineering and Computer Science, Syracuse University)

Read More