Yun Shen (NortonLifeLock Research Group), Pierre-Antoine Vervier (NortonLifeLock Research Group), Gianluca Stringhini (Boston University)

Mobile phones enable the collection of a wealth of private information, from unique identifiers (e.g., email addresses), to a user’s location, to their text messages. This information can be harvested by apps and sent to third parties, which can use it for a variety of purposes. In this paper we perform the largest study of private information collection (PIC) on Android to date. Leveraging an anonymized dataset collected from the customers of a popular mobile security product, we analyze the flows of sensitive information generated by 2.1M unique apps installed by 17.3M users over a period of 21 months between 2018 and 2019. We find that 87.2% of all devices send private information to at least five different domains, and that actors active in different regions (e.g., Asia compared to Europe) are interested in collecting different types of information. The United States (62% of the total) and China (7% of total flows) are the countries that collect most private information. Our findings raise issues regarding data regulation, and would encourage policymakers to further regulate how private information is used by and shared among the companies and how accountability can be truly guaranteed.

View More Papers

(Short) Spoofing Mobileye 630’s Video Camera Using a Projector

Ben Nassi, Dudi Nassi, Raz Ben Netanel and Yuval Elovici (Ben-Gurion University of the Negev)

Read More

PFirewall: Semantics-Aware Customizable Data Flow Control for Smart Home...

Haotian Chi (Temple University), Qiang Zeng (University of South Carolina), Xiaojiang Du (Temple University), Lannan Luo (University of South Carolina)

Read More

Reinforcement Learning-based Hierarchical Seed Scheduling for Greybox Fuzzing

Jinghan Wang (University of California, Riverside), Chengyu Song (University of California, Riverside), Heng Yin (University of California, Riverside)

Read More

RandRunner: Distributed Randomness from Trapdoor VDFs with Strong Uniqueness

Philipp Schindler (SBA Research), Aljosha Judmayer (SBA Research), Markus Hittmeir (SBA Research), Nicholas Stifter (SBA Research, TU Wien), Edgar Weippl...

Read More