Jun Zeng (National University of Singapore), Zheng Leong Chua (Independent Researcher), Yinfang Chen (National University of Singapore), Kaihang Ji (National University of Singapore), Zhenkai Liang (National University of Singapore), Jian Mao (Beihang University)

Endpoint monitoring solutions are widely deployed in today’s enterprise environments to support advanced attack detection and investigation. These monitors continuously record system-level activities as audit logs and provide deep visibility into security incidents. Unfortunately, to recognize behaviors of interest and detect potential threats, cyber analysts face a semantic gap between low-level audit events and high-level system behaviors. To bridge this gap, existing work largely matches streams of audit logs against a knowledge base of rules that describe behaviors. However, specifying such rules heavily relies on expert knowledge. In this paper, we present Watson, an automated approach to abstracting behaviors by inferring and aggregating the semantics of audit events. Watson uncovers the semantics of events through their usage context in audit logs. By extracting behaviors as connected system operations, Watson then combines event semantics as the representation of behaviors. To reduce analysis workload, Watson further clusters semantically similar behaviors and distinguishes the representatives for analyst investigation. In our evaluation against both benign and malicious behaviors, Watson exhibits high accuracy for behavior abstraction. Moreover, Watson can reduce analysis workload by two orders of magnitude for attack investigation.

View More Papers

Why Do Programmers Do What They Do? A Theory...

Lavanya Sajwan, James Noble, Craig Anslow (Victoria University of Wellington), Robert Biddle (Carleton University)

Read More

SpecTaint: Speculative Taint Analysis for Discovering Spectre Gadgets

Zhenxiao Qi (UC Riverside), Qian Feng (Baidu USA), Yueqiang Cheng (NIO Security Research), Mengjia Yan (MIT), Peng Li (ByteDance), Heng Yin (UC Riverside), Tao Wei (Ant Group)

Read More

LaKSA: A Probabilistic Proof-of-Stake Protocol

Daniel Reijsbergen (Singapore University of Technology and Design), Pawel Szalachowski (Singapore University of Technology and Design), Junming Ke (University of Tartu), Zengpeng Li (Singapore University of Technology and Design), Jianying Zhou (Singapore University of Technology and Design)

Read More

TASE: Reducing Latency of Symbolic Execution with Transactional Memory

Adam Humphries (University of North Carolina), Kartik Cating-Subramanian (University of Colorado), Michael K. Reiter (Duke University)

Read More