Caiqin Dong (Jinan University), Jian Weng (Jinan University), Jia-Nan Liu (Jinan University), Yue Zhang (Jinan University), Yao Tong (Guangzhou Fongwell Data Limited Company), Anjia Yang (Jinan University), Yudan Cheng (Jinan University), Shun Hu (Jinan University)

In secure machine learning inference, most of the schemes assume that the server is semi-honest (honestly following the protocol but attempting to infer additional information). However, the server may be malicious (e.g., using a low-quality model or deviating from the protocol) in the real world. Although a few studies have considered a malicious server that deviates from the protocol, they ignore the verification of model accuracy (where the malicious server uses a low-quality model) meanwhile preserving the privacy of both the server's model and the client's inputs. To address these issues, we propose textit{Fusion}, where the client mixes the public samples (which have known query results) with their own samples to be queried as the inputs of multi-party computation to jointly perform the secure inference. Since a server that uses a low-quality model or deviates from the protocol can only produce results that can be easily identified by the client, textit{Fusion} forces the server to behave honestly, thereby addressing all those aforementioned issues without leveraging expensive cryptographic techniques. Our evaluation indicates that textit{Fusion} is 48.06$times$ faster and uses 30.90$times$ less communication than the existing maliciously secure inference protocol (which currently does not support the verification of the model accuracy). In addition, to show the scalability, we conduct ImageNet-scale inference on the practical ResNet50 model and it costs 8.678 minutes and 10.117 GiB of communication in a WAN setting, which is 1.18$times$ faster and has 2.64$times$ less communication than those of the semi-honest protocol.

View More Papers

Securing Federated Sensitive Topic Classification against Poisoning Attacks

Tianyue Chu (IMDEA Networks Institute), Alvaro Garcia-Recuero (IMDEA Networks Institute), Costas Iordanou (Cyprus University of Technology), Georgios Smaragdakis (TU Delft), Nikolaos Laoutaris (IMDEA Networks Institute)

Read More

AuthentiSense: A Scalable Behavioral Biometrics Authentication Scheme using Few-Shot...

Hossein Fereidooni (Technical University of Darmstadt), Jan Koenig (University of Wuerzburg), Phillip Rieger (Technical University of Darmstadt), Marco Chilese (Technical University of Darmstadt), Bora Goekbakan (KOBIL, Germany), Moritz Finke (University of Wuerzburg), Alexandra Dmitrienko (University of Wuerzburg), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More

Cryptographic Oracle-based Conditional Payments

Varun Madathil (North Carolina State University), Sri Aravinda Krishnan Thyagarajan (NTT Research), Dimitrios Vasilopoulos (IMDEA Software Institute), Lloyd Fournier (None), Giulio Malavolta (Max Planck Institute for Security and Privacy), Pedro Moreno-Sanchez (IMDEA Software Institute)

Read More

Adversarial Robustness for Tabular Data through Cost and Utility...

Klim Kireev (EPFL), Bogdan Kulynych (EPFL), Carmela Troncoso (EPFL)

Read More