Tung Le (Virginia Tech), Pengzhi Huang (Cornell University), Attila A. Yavuz (University of South Florida), Elaine Shi (CMU), Thang Hoang (Virginia Tech)

Storage-as-a-service (STaaS) permits the client to outsource her data to the cloud thereby, reducing data management and maintenance costs. However, STaaS also brings significant data integrity and soundness concerns since the storage provider might not keep the client data intact and retrievable all the time (e.g., cost saving via deletions). Proof of Retrievability (PoR) can validate the integrity and retrievability of remote data effectively. This technique can be useful for regular audits to monitor data compromises, as well as to comply with standard data regulations. In particular, cold storage applications (e.g., MS Azure, Amazon Glacier) require regular and frequent audits but with less frequent data modification. Yet, despite their merits, existing PoR techniques generally focus on other metrics (e.g., low storage, fast update, metadata privacy) but not audit efficiency (e.g., low audit time, small proof size). Hence, there is a need to develop new PoR techniques that achieve efficient data audit while preserving update and retrieval performance.

In this paper, we propose Porla, a new PoR framework that permits efficient data audit, update, and retrieval functionalities simultaneously. Porla permits data audit in both private and public settings, each of which features asymptotically (and concretely) smaller audit-proof size and lower audit time than all the prior works while retaining the same asymptotic data update overhead. Porla achieves all these properties by composing erasure codes with verifiable computation techniques which, to our knowledge, is a new approach to PoR design. We address several challenges that arise in such a composition by creating a new homomorphic authenticated commitment scheme, which can be of independent interest. We fully implemented Porla and evaluated its performance on commodity cloud (i.e., Amazon EC2) under various settings. Experimental results demonstrated that Porla achieves two to four orders of magnitude smaller audit proof size with 4× – 1,800× lower audit time than all prior schemes in both private and public audit settings at the cost of only 2× – 3× slower update.

View More Papers

LOKI: State-Aware Fuzzing Framework for the Implementation of Blockchain...

Fuchen Ma (Tsinghua University), Yuanliang Chen (Tsinghua University), Meng Ren (Tsinghua University), Yuanhang Zhou (Tsinghua University), Yu Jiang (Tsinghua University), Ting Chen (University of Electronic Science and Technology of China), Huizhong Li (WeBank), Jiaguang Sun (School of Software, Tsinghua University)

Read More

Applying Accessibility Metrics to Measure the Threat Landscape for...

John Breton, AbdelRahman Abdou (Carleton University)

Read More

Fine-Grained Trackability in Protocol Executions

Ksenia Budykho (Surrey Centre for Cyber Security, University of Surrey, UK), Ioana Boureanu (Surrey Centre for Cyber Security, University of Surrey, UK), Steve Wesemeyer (Surrey Centre for Cyber Security, University of Surrey, UK), Daniel Romero (NCC Group), Matt Lewis (NCC Group), Yogaratnam Rahulan (5G/6G Innovation Centre - 5GIC/6GIC, University of Surrey, UK), Fortunat Rajaona (Surrey…

Read More

SoundLock: A Novel User Authentication Scheme for VR Devices...

Huadi Zhu (The University of Texas at Arlington), Mingyan Xiao (The University of Texas at Arlington), Demoria Sherman (The University of Texas at Arlington), Ming Li (The University of Texas at Arlington)

Read More