Mir Masood Ali (University of Illinois Chicago), Binoy Chitale (Stony Brook University), Mohammad Ghasemisharif (University of Illinois Chicago), Chris Kanich (University of Illinois Chicago), Nick Nikiforakis (Stony Brook University), Jason Polakis (University of Illinois Chicago)

Modern web browsers constitute complex application platforms with a wide range of APIs and features. Critically, this includes a multitude of heterogeneous mechanisms that allow sites to store information that explicitly or implicitly alters client-side state or functionality. This behavior implicates any browser storage, cache, access control, and policy mechanism as a potential tracking vector. As demonstrated by prior work, tracking vectors can manifest through elaborate behaviors and exhibit varying characteristics that differ vastly across different browsing
contexts. In this paper we develop CanITrack, an automated, mechanism-agnostic framework for testing browser features and uncovering novel tracking vectors. Our system is designed for facilitating browser vendors and researchers by streamlining the systematic testing of browser mechanisms. It accepts methods to read and write entries for a mechanism and calls these methods across different browsing contexts to determine any potential tracking vulnerabilities that the mechanism may expose. To demonstrate our system’s capabilities we test 21 browser mechanisms and uncover a slew of tracking vectors, including 13 that enable third-party tracking and two that bypass the isolation offered by private browsing modes. Importantly, we show how two separate mechanisms from Google’s highly-publicized and widely-discussed Privacy Sandbox initiative can be leveraged for tracking. Our experimental findings have resulted in 20 disclosure reports across seven major browsers, which have set remediation efforts in motion. Overall, our study highlights the complex and formidable challenge that browsers currently face when trying to balance the adoption of new features and protecting the privacy of their users, as well as the potential benefit of incorporating CanITrack into their internal testing pipeline.

View More Papers

MyTEE: Own the Trusted Execution Environment on Embedded Devices

Seungkyun Han (Chungnam National University), Jinsoo Jang (Chungnam National University)

Read More

CLExtract: Recovering Highly Corrupted DVB/GSE Satellite Stream with Contrastive...

Minghao Lin (University of Colorado Boulder), Minghao Cheng (Independent Researcher), Dongsheng Luo (Florida International University), Yueqi Chen (University of Colorado Boulder) Presenter: Minghao Lin

Read More

An Exploratory study of Malicious Link Posting on Social...

Muhammad Hassan, Mahnoor Jameel, Masooda Bashir (University of Illinois at Urbana Champaign)

Read More