Shuo Wang (CSIRO's Data61 & Cybersecurity CRC, Australia), Mahathir Almashor (CSIRO's Data61 & Cybersecurity CRC, Australia), Alsharif Abuadbba (CSIRO's Data61 & Cybersecurity CRC, Australia), Ruoxi Sun (CSIRO's Data61), Minhui Xue (CSIRO's Data61), Calvin Wang (CSIRO's Data61), Raj Gaire (CSIRO's Data61 & Cybersecurity CRC, Australia), Surya Nepal (CSIRO's Data61 & Cybersecurity CRC, Australia), Seyit Camtepe (CSIRO's Data61 & Cybersecurity CRC, Australia)

Traditional block/allow lists remain a significant defense against malicious websites, by limiting end-users' access to domain names. However, such lists are often incomplete and reactive in nature. In this work, we first introduce an expansion graph which creates organically grown Internet domain allow-lists based on trust transitivity by crawling hyperlinks. Then, we highlight the gap of monitoring nodes with such an expansion graph, where malicious nodes are buried deep along the paths from the compromised websites, termed as "on-chain compromise". The stealthiness (evasion of detection) and large-scale issues impede the application of existing web malicious analysis methods for identifying on-chain compromises within the sparsely labeled graph. To address the unique challenges of revealing the on-chain compromises, we propose a two-step integrated scheme, DoITrust, leveraging both individual node features and topology analysis: (i) we develop a semi-supervised suspicion prediction scheme to predict the probability of a node being relevant to targets of compromise (i.e., the denied nodes), including a novel node ranking approach as an efficient global propagation scheme to incorporate the topology information, and a scalable graph learning scheme to separate the global propagation from the training of the local prediction model, and (ii) based on the suspicion prediction results, efficient pruning strategies are proposed to further remove highly suspicious nodes from the crawled graph and analyze the underlying indicator of compromise. Experimental results show that DoITrust achieves 90% accuracy using less than 1% labeled nodes for the suspicion prediction, and its learning capability outperforms existing node-based and structure-based approaches. We also demonstrate that DoITrust is portable and practical. We manually review the detected compromised nodes, finding that at least 94.55% of them have suspicious content, and investigate the underlying indicator of on-chain compromise.

View More Papers

SoundLock: A Novel User Authentication Scheme for VR Devices...

Huadi Zhu (The University of Texas at Arlington), Mingyan Xiao (The University of Texas at Arlington), Demoria Sherman (The University of Texas at Arlington), Ming Li (The University of Texas at Arlington)

Read More

Operationalizing Cybersecurity Research Ethics Review: From Principles and Guidelines...

Dennis Reidsma, Jeroen van der Ham, and Andrea Continella (University of Twente)

Read More

Do Not Give a Dog Bread Every Time He...

Chongqing Lei (Southeast University), Zhen Ling (Southeast University), Yue Zhang (Jinan University), Kai Dong (Southeast University), Kaizheng Liu (Southeast University), Junzhou Luo (Southeast University), Xinwen Fu (University of Massachusetts Lowell)

Read More

Brokenwire: Wireless Disruption of CCS Electric Vehicle Charging

Sebastian Köhler (University of Oxford), Richard Baker (University of Oxford), Martin Strohmeier (armasuisse Science + Technology), Ivan Martinovic (University of Oxford)

Read More