Bishakh Chandra Ghosh (Indian Institute of Technology Kharagpur), Sikhar Patranabis (IBM Research - India), Dhinakaran Vinayagamurthy (IBM Research - India), Venkatraman Ramakrishna (IBM Research - India), Krishnasuri Narayanam (IBM Research - India), Sandip Chakraborty (Indian Institute of Technology Kharagpur)

We initiate the study of Private Certifier Intersection (PCI), which allows mutually distrusting parties to establish a trust basis for cross-validation of claims if they have one or more trust authorities (certifiers) in common. This is one of the essential requirements for verifiable presentations in Web 3.0, since it provides additional privacy without compromising on decentralization. A PCI protocol allows two or more parties holding certificates to identify a common set of certifiers while additionally validating the certificates issued by such certifiers, without leaking any information about the certifiers not in the output intersection. In this paper, we formally define the notion of multi-party PCI in the Simplified-UC framework for two different settings depending on whether certificates are required for any of the claims (called PCI-Any) or all of the claims (called PCI-All). We then design and implement two provably secure and practically efficient PCI protocols supporting validation of digital signature-based certificates: a PCI-Any protocol for ECDSA-based certificates and a PCI-All protocol for BLS-based certificates. The technical centerpiece of our proposals is the first secretsharing-based MPC framework supporting efficient computation of elliptic curve-based arithmetic operations, including elliptic curve pairings, in a black-box way. We implement this framework by building on top of the well-known MP-SPDZ library using OpenSSL and RELIC for elliptic curve operations, and use this implementation to benchmark our proposed PCI protocols in the LAN and WAN settings. In an intercontinental WAN setup with parties located in different continents, our protocols execute in less than a minute on input sets of size 40, which demonstrates the practicality of our proposed solutions.

View More Papers

Fusion: Efficient and Secure Inference Resilient to Malicious Servers

Caiqin Dong (Jinan University), Jian Weng (Jinan University), Jia-Nan Liu (Jinan University), Yue Zhang (Jinan University), Yao Tong (Guangzhou Fongwell Data Limited Company), Anjia Yang (Jinan University), Yudan Cheng (Jinan University), Shun Hu (Jinan University)

Read More

Evaluations of Cyberattacks on Cooperative Control of Connected and...

H M Sabbir Ahmad (Boston University), Ehsan Sabouni (Boston University), Wei Xiao (Massachusetts Institute of Technology), Christos G. Cassandras (Boston University), Wenchao Li (Boston University)

Read More

BEAGLE: Forensics of Deep Learning Backdoor Attack for Better...

Siyuan Cheng (Purdue University), Guanhong Tao (Purdue University), Yingqi Liu (Purdue University), Shengwei An (Purdue University), Xiangzhe Xu (Purdue University), Shiwei Feng (Purdue University), Guangyu Shen (Purdue University), Kaiyuan Zhang (Purdue University), Qiuling Xu (Purdue University), Shiqing Ma (Rutgers University), Xiangyu Zhang (Purdue University)

Read More

BlockScope: Detecting and Investigating Propagated Vulnerabilities in Forked Blockchain...

Xiao Yi (The Chinese University of Hong Kong), Yuzhou Fang (The Chinese University of Hong Kong), Daoyuan Wu (The Chinese University of Hong Kong), Lingxiao Jiang (Singapore Management University)

Read More