Vik Vanderlinden, Wouter Joosen, Mathy Vanhoef (imec-DistriNet, KU Leuven)

Performing a remote timing attack typically entails the collection of many timing measurements in order to overcome noise due to network jitter. If an attacker can reduce the amount of jitter in their measurements, they can exploit timing leaks using fewer measurements. To reduce the amount of jitter, an attacker may use timing information that is made available by a server. In this paper, we exploit the use of the server-timing header, which was created for performance monitoring and in some cases exposes millisecond accurate information about server-side execution times. We show that the header is increasingly often used, with an uptick in adoption rates in recent months. The websites that use the header often host dynamic content of which the generation time can potentially leak sensitive information. Our new attack techniques, one of which collects the header timing values from an intermediate proxy, improve performance over standard attacks using roundtrip times. Experiments show that, overall, our new attacks (significantly) decrease the number of samples required to exploit timing leaks. The attack is especially effective against geographically distant servers.

View More Papers

Evaluations of Cyberattacks on Cooperative Control of Connected and...

H M Sabbir Ahmad (Boston University), Ehsan Sabouni (Boston University), Wei Xiao (Massachusetts Institute of Technology), Christos G. Cassandras (Boston University), Wenchao Li (Boston University)

Read More

The Walls Have Ears: Gauging Security Awareness in a...

Gokul Jayakrishnan, Vijayanand Banahatti, Sachin Lodha (TCS Research Tata Consultancy Services Ltd.)

Read More

HeteroScore: Evaluating and Mitigating Cloud Security Threats Brought by...

Chongzhou Fang (University of California, Davis), Najmeh Nazari (University of California, Davis), Behnam Omidi (George Mason University), Han Wang (Temple University), Aditya Puri (Foothill High School, Pleasanton, CA), Manish Arora (LearnDesk, Inc.), Setareh Rafatirad (University of California, Davis), Houman Homayoun (University of California, Davis), Khaled N. Khasawneh (George Mason University)

Read More

Navigating Murky Waters: Automated Browser Feature Testing for Uncovering...

Mir Masood Ali (University of Illinois Chicago), Binoy Chitale (Stony Brook University), Mohammad Ghasemisharif (University of Illinois Chicago), Chris Kanich (University of Illinois Chicago), Nick Nikiforakis (Stony Brook University), Jason Polakis (University of Illinois Chicago)

Read More