Jiacheng Xu (Zhejiang University), Xuhong Zhang (Zhejiang University), Shouling Ji (Zhejiang University), Yuan Tian (UCLA), Binbin Zhao (Georgia Institute of Technology), Qinying Wang (Zhejiang University), Peng Cheng (Zhejiang University), Jiming Chen (Zhejiang University)

Kernels are at the heart of modern operating systems, whereas their development comes with vulnerabilities. Coverage-guided fuzzing has proven to be a promising software testing technique. When applying fuzzing to kernels, the salient aspect of it is that the input is a sequence of system calls (syscalls). As kernels are complex and stateful, specific sequences of syscalls are required to build up necessary states to trigger code deep in the kernels. However, the syscall sequences generated by existing fuzzers fall short in maintaining states to sufficiently cover deep code in the kernels where vulnerabilities favor residing.

In this paper, we present a practical and effective kernel fuzzing framework, called MOCK, which is capable of learning the contextual dependencies in syscall sequences and then generating context-aware syscall sequences. To conform to the statefulness when fuzzing kernel, MOCK adaptively mutates syscall sequences in line with the calling context. MOCK integrates the context-aware dependency with (1) a customized language model-guided dependency learning algorithm, (2) a context-aware syscall sequence mutation algorithm, and (3) an adaptive task scheduling strategy to balance exploration and exploitation. Our evaluation shows that MOCK performs effectively in achieving branch coverage (up to 32% coverage growth), producing high-quality input (50% more interrelated sequences), and discovering bugs (15% more unique crashes) than the state-of-the-art kernel fuzzers. Various setups including initial seeds and a pre-trained model further boost MOCK's performance. Additionally, MOCK also discovers 15 unique bugs in the most recent Linux kernels, including two CVEs.

View More Papers

Using Behavior Monitoring to Identify Privacy Concerns in Smarthome...

Atheer Almogbil, Momo Steele, Sofia Belikovetsky (Johns Hopkins University), Adil Inam (University of Illinois at Urbana-Champaign), Olivia Wu (Johns Hopkins University), Aviel Rubin (Johns Hopkins University), Adam Bates (University of Illinois at Urbana-Champaign)

Read More

CAGE: Complementing Arm CCA with GPU Extensions

Chenxu Wang (Southern University of Science and Technology (SUSTech) and The Hong Kong Polytechnic University), Fengwei Zhang (Southern University of Science and Technology (SUSTech)), Yunjie Deng (Southern University of Science and Technology (SUSTech)), Kevin Leach (Vanderbilt University), Jiannong Cao (The Hong Kong Polytechnic University), Zhenyu Ning (Hunan University), Shoumeng Yan (Ant Group), Zhengyu He (Ant…

Read More

“I used to live in Florida”: Exploring the Impact...

Imani N. S. Munyaka (University of California, San Diego), Daniel A Delgado, Juan Gilbert, Jaime Ruiz, Patrick Traynor (University of Florida)

Read More

Pisces: Private and Compliable Cryptocurrency Exchange

Ya-Nan Li (The University of Sydney), Tian Qiu (The University of Sydney), Qiang Tang (The University of Sydney)

Read More