Arjun Arunasalam (Purdue University), Habiba Farrukh (University of California, Irvine), Eliz Tekcan (Purdue University), Z. Berkay Celik (Purdue University)

Refugees form a vulnerable population due to their forced displacement, facing many challenges in the process, such as language barriers and financial hardship. Recent world events such as the Ukrainian and Afgan refugee crises have centered this population in online discourse, especially in social media, e.g., TikTok and Twitter. Although discourse can be benign, hateful and malicious discourse also emerges. Thus, refugees often become targets of toxic content, where malicious attackers post online hate targeting this population. Such online toxicity can vary in nature; e.g., toxicity can differ in scale (individual vs. group), and intent (embarrassment vs. harm), and the varying types of toxicity targeting refugees largely remain unexplored. We seek to understand the types of toxic content targeting refugees in online spaces. To do so, we carefully curate seed queries to collect a corpus of ∼3 M Twitter posts targeting refugees. We semantically sample this corpus to produce an annotated dataset of 1,400 posts against refugees from seven different languages. We additionally use a deductive approach to qualitatively analyze the motivating sentiments (reasons) behind toxic posts. We discover that trolling and hate speech are the predominant toxic content that targets refugees. Furthermore, we uncover four main motivating sentiments (e.g., perceived ungratefulness, perceived fear of safety). Our findings synthesize important lessons for moderating toxic content, especially for vulnerable communities.

View More Papers

Free Proxies Unmasked: A Vulnerability and Longitudinal Analysis of...

Naif Mehanna (Univ. Lille / Inria / CNRS), Walter Rudametkin (IRISA / Univ Rennes), Pierre Laperdrix (CNRS, Univ Lille, Inria Lille), and Antoine Vastel (Datadome)

Read More

Secret-Shared Shuffle with Malicious Security

Xiangfu Song (National University of Singapore), Dong Yin (Ant Group), Jianli Bai (The University of Auckland), Changyu Dong (Guangzhou University), Ee-Chien Chang (National University of Singapore)

Read More

SSL-WM: A Black-Box Watermarking Approach for Encoders Pre-trained by...

Peizhuo Lv (Institute of Information Engineering, Chinese Academy of Sciences, China; School of Cyber Security, University of Chinese Academy of Sciences, China), Pan Li (Institute of Information Engineering, Chinese Academy of Sciences, China; School of Cyber Security, University of Chinese Academy of Sciences, China), Shenchen Zhu (Institute of Information Engineering, Chinese Academy of Sciences, China;…

Read More

You Can Use But Cannot Recognize: Preserving Visual Privacy...

Qiushi Li (Tsinghua University), Yan Zhang (Tsinghua University), Ju Ren (Tsinghua University), Qi Li (Tsinghua University), Yaoxue Zhang (Tsinghua University)

Read More