Ke Coby Wang (Duke University), Michael K. Reiter (Duke University)

Decoy passwords, or "honeywords," planted in a credential database can alert a site to its breach if ever submitted in a login attempt. To be effective, some honeywords must appear at least as likely to be user-chosen passwords as the real ones, and honeywords must be very difficult to guess without having breached the database, to prevent false breach alarms. These goals have proved elusive, however, for heuristic honeyword generation algorithms. In this paper we explore an alternative strategy in which the defender treats honeyword selection as a Bernoulli process in which each possible password (except the user-chosen one) is selected as a honeyword independently with some fixed probability. We show how Bernoulli honeywords can be integrated into two existing system designs for leveraging honeywords: one based on a honeychecker that stores the secret index of the user-chosen password in the list of account passwords, and another that does not leverage secret state at all. We show that Bernoulli honeywords enable analytic derivation of false breach-detection probabilities irrespective of what information the attacker gathers about the sites' users; that their true and false breach-detection probabilities demonstrate compelling efficacy; and that Bernoulli honeywords can even enable performance improvements in modern honeyword system designs.

View More Papers

SURGEON: Performant, Flexible and Accurate Re-Hosting via Transplantation

Florian Hofhammer (EPFL), Marcel Busch (EPFL), Qinying Wang (EPFL and Zhejiang University), Manuel Egele (Boston University), Mathias Payer (EPFL)

Read More

A Cross-Verification Approach with Publicly Available Map for Detecting...

Takami Sato, Ningfei Wang (University of California, Irvine), Yueqiang Cheng (NIO Security Research), Qi Alfred Chen (University of California, Irvine)

Read More

MacOS versus Microsoft Windows: A Study on the Cybersecurity...

Cem Topcuoglu (Northeastern University), Andrea Martinez (Florida International University), Abbas Acar (Florida International University), Selcuk Uluagac (Florida International University), Engin Kirda (Northeastern University)

Read More

WIP: Hidden Hub Eavesdropping Attack in Matter-enabled Smart Home...

Song Liao, Jingwen Yan, Long Cheng (Clemson University)

Read More