Ke Coby Wang (Duke University), Michael K. Reiter (Duke University)

Decoy passwords, or "honeywords," planted in a credential database can alert a site to its breach if ever submitted in a login attempt. To be effective, some honeywords must appear at least as likely to be user-chosen passwords as the real ones, and honeywords must be very difficult to guess without having breached the database, to prevent false breach alarms. These goals have proved elusive, however, for heuristic honeyword generation algorithms. In this paper we explore an alternative strategy in which the defender treats honeyword selection as a Bernoulli process in which each possible password (except the user-chosen one) is selected as a honeyword independently with some fixed probability. We show how Bernoulli honeywords can be integrated into two existing system designs for leveraging honeywords: one based on a honeychecker that stores the secret index of the user-chosen password in the list of account passwords, and another that does not leverage secret state at all. We show that Bernoulli honeywords enable analytic derivation of false breach-detection probabilities irrespective of what information the attacker gathers about the sites' users; that their true and false breach-detection probabilities demonstrate compelling efficacy; and that Bernoulli honeywords can even enable performance improvements in modern honeyword system designs.

View More Papers

From Interaction to Independence: zkSNARKs for Transparent and Non-Interactive...

Shahriar Ebrahimi (IDEAS-NCBR), Parisa Hassanizadeh (IDEAS-NCBR)

Read More

Transforming Raw Authentication Logs into Interpretable Events

Seth Hastings, Tyler Moore, Corey Bolger, Philip Schumway (University of Tulsa)

Read More

FirmDiff: Improving the Configuration of Linux Kernels Geared Towards...

Ioannis Angelakopoulos (Boston University), Gianluca Stringhini (Boston University), Manuel Egele (Boston University)

Read More

Modeling and Detecting Internet Censorship Events

Elisa Tsai (University of Michigan), Ram Sundara Raman (University of Michigan), Atul Prakash (University of Michigan), Roya Ensafi (University of Michigan)

Read More