Yuxiang Yang (Tsinghua University), Xuewei Feng (Tsinghua University), Qi Li (Tsinghua University), Kun Sun (George Mason University), Ziqiang Wang (Southeast University), Ke Xu (Tsinghua University)

In this paper, we uncover a new side-channel vulnerability in the widely used NAT port preservation strategy and an insufficient reverse path validation strategy of Wi-Fi routers, which allows an off-path attacker to infer if there is one victim client in the same network communicating with another host on the Internet using TCP. After detecting the presence of TCP connections between the victim client and the server, the attacker can evict the original NAT mapping and reconstruct a new mapping at the router by sending fake TCP packets due to the routers' vulnerability of disabling TCP window tracking strategy, which has been faithfully implemented in most of the routers for years. In this way, the attacker can intercept TCP packets from the server and obtain the current sequence and acknowledgment numbers, which in turn allows the attacker to forcibly close the connection, poison the traffic in plain text, or reroute the server's incoming packets to the attacker.

We test 67 widely used routers from 30 vendors and discover that 52 of them are affected by this attack. Also, we conduct an extensive measurement study on 93 real-world Wi-Fi networks. The experimental results show that 75 of these evaluated Wi-Fi networks (81%) are fully vulnerable to our attack. Our case study shows that it takes about 17.5, 19.4, and 54.5 seconds on average to terminate an SSH connection, download private files from FTP servers, and inject fake HTTP response packets with success rates of 87.4%, 82.6%, and 76.1%. We responsibly disclose the vulnerability and suggest mitigation strategies to all affected vendors and have received positive feedback, including acknowledgments, CVEs, rewards, and adoption of our suggestions.

View More Papers

Invisible Reflections: Leveraging Infrared Laser Reflections to Target Traffic...

Takami Sato (University of California Irvine), Sri Hrushikesh Varma Bhupathiraju (University of Florida), Michael Clifford (Toyota InfoTech Labs), Takeshi Sugawara (The University of Electro-Communications), Qi Alfred Chen (University of California, Irvine), Sara Rampazzi (University of Florida)

Read More

Gradient Shaping: Enhancing Backdoor Attack Against Reverse Engineering

Rui Zhu (Indiana University Bloominton), Di Tang (Indiana University Bloomington), Siyuan Tang (Indiana University Bloomington), Zihao Wang (Indiana University Bloomington), Guanhong Tao (Purdue University), Shiqing Ma (University of Massachusetts Amherst), XiaoFeng Wang (Indiana University Bloomington), Haixu Tang (Indiana University, Bloomington)

Read More

WIP: An Adaptive High Frequency Removal Attack to Bypass...

Yuki Hayakawa (Keio University), Takami Sato (University of California, Irvine), Ryo Suzuki, Kazuma Ikeda, Ozora Sako, Rokuto Nagata (Keio University), Qi Alfred Chen (University of California, Irvine), Kentaro Yoshioka (Keio University)

Read More

Detecting Voice Cloning Attacks via Timbre Watermarking

Chang Liu (University of Science and Technology of China), Jie Zhang (Nanyang Technological University), Tianwei Zhang (Nanyang Technological University), Xi Yang (University of Science and Technology of China), Weiming Zhang (University of Science and Technology of China), NengHai Yu (University of Science and Technology of China)

Read More