Qiushi Wu (University of Minnesota), Zhongshu Gu (IBM Research), Hani Jamjoom (IBM Research), Kangjie Lu (University of Minnesota)

Generating accurate call graphs for large programs, particularly at the operating system (OS) level, poses a well-known challenge. This difficulty stems from the widespread use of indirect calls within large programs, wherein the computation of call targets is deferred until runtime to achieve program polymorphism. Consequently, compilers are unable to statically determine indirect call edges. Recent advancements have attempted to use type analysis to globally match indirect call targets in programs. However, these approaches still suffer from low precision when handling large target programs or generic types.

This paper presents GNNIC, a Graph Neural Network (GNN) based Indirect Call analyzer. GNNIC employs a technique called abstract-similarity search to accurately identify indirect call targets in large programs. The approach is based on the observation that although indirect call targets exhibit intricate polymorphic behaviors, they share common abstract characteristics, such as function descriptions, data types, and invoked function calls. We consolidate such information into a representative abstraction graph (RAG) and employ GNNs to learn function embeddings. Abstract-similarity search relies on at least one anchor target to bootstrap. Therefore, we also propose a new program analysis technique to locally identify valid targets of each indirect call.
Starting from anchor targets, GNNIC can expand the search scope to find more targets of indirect calls in the whole program.
The implementation of GNNIC utilizes LLVM and GNN, and we evaluated it on multiple OS kernels. The results demonstrate that GNNIC outperforms state-of-the-art type-based techniques by reducing 86% to 93% of false target functions. Moreover, the abstract similarity and precise call graphs generated by GNNIC can enhance security applications by discovering new bugs, alleviating path-explosion issues, and improving the efficiency of static program analysis. The combination of static analysis and GNNIC resulted in finding 97 new bugs in Linux and FreeBSD kernels.

View More Papers

On the Feasibility of CubeSats Application Sandboxing for Space...

Gabriele Marra (CISPA Helmholtz Center for Information Security), Ulysse Planta (CISPA Helmholtz Center for Information Security and Saarbrücken Graduate School of Computer Science), Philipp Wüstenberg (Chair of Space Technology, Technische Universität Berlin), Ali Abbasi (CISPA Helmholtz Center for Information Security)

Read More

A Preliminary Study on Using Large Language Models in...

Kumar Shashwat, Francis Hahn, Xinming Ou, Dmitry Goldgof, Jay Ligatti, Larrence Hall (University of South Florida), S. Raj Rajagoppalan (Resideo), Armin Ziaie Tabari (CipherArmor)

Read More

CrowdGuard: Federated Backdoor Detection in Federated Learning

Phillip Rieger (Technical University of Darmstadt), Torsten Krauß (University of Würzburg), Markus Miettinen (Technical University of Darmstadt), Alexandra Dmitrienko (University of Würzburg), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More

SOC Service Areas: Identification, Prioritization, and Implementation

Christopher Rodman, Breanna Kraus, Justin Novak (SEI/CERT)

Read More