Zicong Gao (State Key Laboratory of Mathematical Engineering and Advanced Computing), Chao Zhang (Tsinghua University), Hangtian Liu (State Key Laboratory of Mathematical Engineering and Advanced Computing), Wenhou Sun (Tsinghua University), Zhizhuo Tang (State Key Laboratory of Mathematical Engineering and Advanced Computing), Liehui Jiang (State Key Laboratory of Mathematical Engineering and Advanced Computing), Jianjun Chen (Tsinghua University), Yong Xie (Qinghai University)

IoT devices are often found vulnerable, i.e., untrusted inputs may trigger potential vulnerabilities and flow to sensitive operations in the firmware, which could cause severe damage. As such vulnerabilities are in general taint-style, a promising solution to find them is static taint analysis. However, existing solutions have limited efficiency and effectiveness. In this paper, we propose a new efficient and effective taint analysis solution, namely HermeScan, to discover such vulnerabilities, which utilizes reaching definition analysis (RDA) to conduct taint analysis and gets much fewer false negatives, false positives, and time costs. We have implemented a prototype of HermeScan and conducted a thorough evaluation on two datasets, i.e., one 0-day dataset with 30 latest firmware and one N-day dataset with 98 older firmware, and compared with two state-of-the art (SOTA) solutions, i.e., KARONTE and SaTC. In terms of effectiveness, HermeScan, SaTC, and KARONTE find 163, 32, and 0 vulnerabilities in the 0-day dataset respectively. In terms of accuracy, the true positive rates of HermeScan, SaTC, and KARONTE are 81%, 42%, and 0% in the 0-day dataset. In terms of efficiency, HermeScan is 7.5X and 3.8X faster than SaTC and KARONTE on average in finding 0-day vulnerabilities.

View More Papers

Secure Multiparty Computation of Threshold Signatures Made More Efficient

Harry W. H. Wong (The Chinese University of Hong Kong), Jack P. K. Ma (The Chinese University of Hong Kong), Sherman S. M. Chow (The Chinese University of Hong Kong)

Read More

GhostType: The Limits of Using Contactless Electromagnetic Interference to...

Qinhong Jiang (Zhejiang University), Yanze Ren (Zhejiang University), Yan Long (University of Michigan), Chen Yan (Zhejiang University), Yumai Sun (University of Michigan), Xiaoyu Ji (Zhejiang University), Kevin Fu (Northeastern University), Wenyuan Xu (Zhejiang University)

Read More

Make your IoT environments robust against adversarial machine learning...

Hamed Haddadpajouh (University of Guelph), Ali Dehghantanha (University of Guelph)

Read More

LiDAR Spoofing Meets the New-Gen: Capability Improvements, Broken Assumptions,...

Takami Sato (University of California, Irvine), Yuki Hayakawa (Keio University), Ryo Suzuki (Keio University), Yohsuke Shiiki (Keio University), Kentaro Yoshioka (Keio University), Qi Alfred Chen (University of California, Irvine)

Read More