Zicong Gao (State Key Laboratory of Mathematical Engineering and Advanced Computing), Chao Zhang (Tsinghua University), Hangtian Liu (State Key Laboratory of Mathematical Engineering and Advanced Computing), Wenhou Sun (Tsinghua University), Zhizhuo Tang (State Key Laboratory of Mathematical Engineering and Advanced Computing), Liehui Jiang (State Key Laboratory of Mathematical Engineering and Advanced Computing), Jianjun Chen (Tsinghua University), Yong Xie (Qinghai University)

IoT devices are often found vulnerable, i.e., untrusted inputs may trigger potential vulnerabilities and flow to sensitive operations in the firmware, which could cause severe damage. As such vulnerabilities are in general taint-style, a promising solution to find them is static taint analysis. However, existing solutions have limited efficiency and effectiveness. In this paper, we propose a new efficient and effective taint analysis solution, namely HermeScan, to discover such vulnerabilities, which utilizes reaching definition analysis (RDA) to conduct taint analysis and gets much fewer false negatives, false positives, and time costs. We have implemented a prototype of HermeScan and conducted a thorough evaluation on two datasets, i.e., one 0-day dataset with 30 latest firmware and one N-day dataset with 98 older firmware, and compared with two state-of-the art (SOTA) solutions, i.e., KARONTE and SaTC. In terms of effectiveness, HermeScan, SaTC, and KARONTE find 163, 32, and 0 vulnerabilities in the 0-day dataset respectively. In terms of accuracy, the true positive rates of HermeScan, SaTC, and KARONTE are 81%, 42%, and 0% in the 0-day dataset. In terms of efficiency, HermeScan is 7.5X and 3.8X faster than SaTC and KARONTE on average in finding 0-day vulnerabilities.

View More Papers

Using Behavior Monitoring to Identify Privacy Concerns in Smarthome...

Atheer Almogbil, Momo Steele, Sofia Belikovetsky (Johns Hopkins University), Adil Inam (University of Illinois at Urbana-Champaign), Olivia Wu (Johns Hopkins University), Aviel Rubin (Johns Hopkins University), Adam Bates (University of Illinois at Urbana-Champaign)

Read More

WIP: Threat Modeling Laser-Induced Acoustic Interference in Computer Vision-Assisted...

Nina Shamsi (Northeastern University), Kaeshav Chandrasekar, Yan Long, Christopher Limbach (University of Michigan), Keith Rebello (Boeing), Kevin Fu (Northeastern University)

Read More

Merge/Space: A Security Testbed for Satellite Systems

M. Patrick Collins (USC Information Sciences Institute), Alefiya Hussain (USC Information Sciences Institute), J.P. Walters (USC Information Sciences Institute), Calvin Ardi (USC Information Sciences Institute), Chris Tran (USC Information Sciences Institute), Stephen Schwab (USC Information Sciences Institute)

Read More

CAGE: Complementing Arm CCA with GPU Extensions

Chenxu Wang (Southern University of Science and Technology (SUSTech) and The Hong Kong Polytechnic University), Fengwei Zhang (Southern University of Science and Technology (SUSTech)), Yunjie Deng (Southern University of Science and Technology (SUSTech)), Kevin Leach (Vanderbilt University), Jiannong Cao (The Hong Kong Polytechnic University), Zhenyu Ning (Hunan University), Shoumeng Yan (Ant Group), Zhengyu He (Ant…

Read More