Yarin Ozery (Ben-Gurion University of the Negev, Akamai Technologies inc.), Asaf Nadler (Ben-Gurion University of the Negev), Asaf Shabtai (Ben-Gurion University of the Negev)

Data exfiltration over the DNS protocol and its detection have been researched extensively in recent years. Prior studies focused on offline detection methods, which although capable of detecting attacks, allow a large amount of data to be exfiltrated before the attack is detected and dealt with. In this paper, we introduce Information-based Heavy Hitters (ibHH), a real-time detection method which is based on live estimations of the amount of information transmitted to registered domains. ibHH uses constant-size memory and supports constant-time queries, which makes it suitable for deployment on recursive DNS servers to further reduce detection and response time. In our eval- uation, we compared the performance of the proposed method to that of leading state-of-the-art DNS exfiltration detection methods on real-world datasets comprising over 250 billion DNS queries. The evaluation demonstrates ibHH’s ability to successfully detect exfiltration rates as slow as 0.7B/s, with a false positive alert rate of less than 0.004, with significantly lower resource consumption compared to other methods.

View More Papers

Efficient and Timely Revocation of V2X Credentials

Gianluca Scopelliti (Ericsson & KU Leuven), Christoph Baumann (Ericsson), Fritz Alder (KU Leuven), Eddy Truyen (KU Leuven), Jan Tobias Mühlberg (Université libre de Bruxelles & KU Leuven)

Read More

Stacking up the LLM Risks: Applied Machine Learning Security

Dr. Gary McGraw, Berryville Institute of Machine Learning

Read More

WIP: An Adaptive High Frequency Removal Attack to Bypass...

Yuki Hayakawa (Keio University), Takami Sato (University of California, Irvine), Ryo Suzuki, Kazuma Ikeda, Ozora Sako, Rokuto Nagata (Keio University), Qi Alfred Chen (University of California, Irvine), Kentaro Yoshioka (Keio University)

Read More

Heterogeneous Graph Pre-training Based Model for Secure and Efficient...

Xurui Li (Fudan University), Xin Shan (Bank of Shanghai), Wenhao Yin (Shanghai Saic Finance Co., Ltd)

Read More