Aozhuo Sun (Institute of Information Engineering, Chinese Academy of Sciences), Jingqiang Lin (School of Cyber Science and Technology, University of Science and Technology of China), Wei Wang (Institute of Information Engineering, Chinese Academy of Sciences), Zeyan Liu (The University of Kansas), Bingyu Li (School of Cyber Science and Technology, Beihang University), Shushang Wen (School of Cyber Science and Technology, University of Science and Technology of China), Qiongxiao Wang (BeiJing Certificate Authority Co., Ltd.), Fengjun Li (The University of Kansas)

The certificate transparency (CT) framework has been deployed to improve the accountability of the TLS certificate ecosystem. However, the current implementation of CT does not enforce or guarantee the correct behavior of third-party monitors, which are essential components of the CT framework, and raises security and reliability concerns. For example, recent studies reported that 5 popular third-party CT monitors cannot always return the complete set of certificates inquired by users, which fundamentally impairs the protection that CT aims to offer. This work revisits the CT design and proposes an additional component of the CT framework, CT watchers. A watcher acts as an inspector of third-party CT monitors to detect any misbehavior by inspecting the certificate search services of a third-party monitor and detecting any inconsistent results returned by multiple monitors. It also semi-automatically analyzes potential causes of the inconsistency, e.g., a monitor’s misconfiguration, implementation flaws, etc. We implemented a prototype of the CT watcher and conducted a 52-day trial operation and several confirmation experiments involving 8.26M unique certificates of about 6,000 domains. From the results returned by 6 active third-party monitors in the wild, the prototype detected 14 potential design or implementation issues of these monitors, demonstrating its effectiveness in public inspections on third-party monitors and the potential to improve the overall reliability of CT.

View More Papers

The Impact of Workload on Phishing Susceptibility: An Experiment

Sijie Zhuo (University of Auckland), Robert Biddle (University of Auckland and Carleton University, Ottawa), Lucas Betts, Nalin Asanka Gamagedara Arachchilage, Yun Sing Koh, Danielle Lottridge, Giovanni Russello (University of Auckland)

Read More

Resilient Routing for Low Earth Orbit Mega-Constellation Networks

Alexander Kedrowitsch (Virginia Tech), Jonathan Black (Virginia Tech) Daphne Yao (Virginia Tech)

Read More

Unus pro omnibus: Multi-Client Searchable Encryption via Access Control

Jiafan Wang (Data61, CSIRO), Sherman S. M. Chow (The Chinese University of Hong Kong)

Read More

COSPAS Search and Rescue Satellite Uplink: A MAC-Based Security...

Syed Khandker (New York University Abu Dhabi), Krzysztof Jurczok (Amateur Radio Operator), Christina Pöpper (New York University Abu Dhabi)

Read More