Chloe Fortuna (STR), JT Paasch (STR), Sam Lasser (Draper), Philip Zucker (Draper), Chris Casinghino (Jane Street), Cody Roux (AWS)

Modifying a binary program without access to the original source code is an error-prone task. In many cases, the modified binary must be tested or otherwise validated to ensure that the change had its intended effect and no others—a process that can be labor-intensive. This paper presents CBAT, an automated tool for verifying the correctness of binary transformations. CBAT’s approach to this task is based on a differential program analysis that checks a relative correctness property over the original and modified versions of a function. CBAT applies this analysis to the binary domain by implementing it as an extension to the BAP binary analysis toolkit. We highlight several features of CBAT that contribute to the tool’s efficiency and to the interpretability of its output. We evaluate CBAT’s performance by using the tool to verify modifications to three collections of functions taken from real-world binaries.

View More Papers

Towards Real-time Voice Interaction Data Collection Monitoring and Ambient...

Tu Le (University of California, Irvine), Zixin Wang (Zhejiang University), Danny Yuxing Huang (New York University), Yaxing Yao (Virginia Tech), Yuan Tian (University of California, Los Angeles)

Read More

Stacking up the LLM Risks: Applied Machine Learning Security

Dr. Gary McGraw, Berryville Institute of Machine Learning

Read More

Content Censorship in the InterPlanetary File System

Srivatsan Sridhar (Stanford University), Onur Ascigil (Lancaster University), Navin Keizer (University College London), François Genon (UCLouvain), Sébastien Pierre (UCLouvain), Yiannis Psaras (Protocol Labs), Etienne Riviere (UCLouvain), Michał Król (City, University of London)

Read More

K-LEAK: Towards Automating the Generation of Multi-Step Infoleak Exploits...

Zhengchuan Liang (UC Riverside), Xiaochen Zou (UC Riverside), Chengyu Song (UC Riverside), Zhiyun Qian (UC Riverside)

Read More