Seth Hasings (University of Tulsa)

Security Operations Centers (SOCs) receive thousands of security alerts each day, and analysts are responsible for evaluating each alert and initiating corrective action when necessary. Many of these alerts require consulting user authentication logs, which are notoriously messy and designed for machine use rather than human interpretability. We apply a novel methodology for processing raw logs into interpretable user authentication events in a university SOC dashboard tool. We review steps for data processing and describe views designed for analysts. To illustrate its value, we utilized the dashboard on a 90-day sample of alert logs from a university SOC. We present two representative alerts from the sample as case studies to motivate and demonstrate the generalized workflows. We show that enhanced data from the dashboard could be utilized to completely investigate over 84% of alerts in the sample without additional context or tools, and a further 13% could be partially investigated.

View More Papers

Careful About What App Promotion Ads Recommend! Detecting and...

Shang Ma (University of Notre Dame), Chaoran Chen (University of Notre Dame), Shao Yang (Case Western Reserve University), Shifu Hou (University of Notre Dame), Toby Jia-Jun Li (University of Notre Dame), Xusheng Xiao (Arizona State University), Tao Xie (Peking University), Yanfang Ye (University of Notre Dame)

Read More

LeoCommon – A Ground Station Observatory Network for LEO...

Eric Jedermann, Martin Böh (University of Kaiserslautern), Martin Strohmeier (armasuisse Science & Technology), Vincent Lenders (Cyber-Defence Campus, armasuisse Science & Technology), Jens Schmitt (University of Kaiserslautern)

Read More

The Philosopher’s Stone: Trojaning Plugins of Large Language Models

Tian Dong (Shanghai Jiao Tong University), Minhui Xue (CSIRO's Data61), Guoxing Chen (Shanghai Jiao Tong University), Rayne Holland (CSIRO's Data61), Yan Meng (Shanghai Jiao Tong University), Shaofeng Li (Southeast University), Zhen Liu (Shanghai Jiao Tong University), Haojin Zhu (Shanghai Jiao Tong University)

Read More

THEMIS: Regulating Textual Inversion for Personalized Concept Censorship

Yutong Wu (Nanyang Technological University), Jie Zhang (Centre for Frontier AI Research, Agency for Science, Technology and Research (A*STAR), Singapore), Florian Kerschbaum (University of Waterloo), Tianwei Zhang (Nanyang Technological University)

Read More