Philipp Mackensen (Ruhr University Bochum), Paul Staat (Max Planck Institute for Security and Privacy), Stefan Roth (Ruhr University Bochum), Aydin Sezgin (Ruhr University Bochum), Christof Paar (Max Planck Institute for Security and Privacy), Veelasha Moonsamy (Ruhr University Bochum)

Wireless communication infrastructure is a cornerstone of modern digital society, yet it remains vulnerable to the persistent threat of wireless jamming. Attackers can easily create radio interference to overshadow legitimate signals, leading to denial of service.
The broadcast nature of radio signal propagation makes such attacks possible in the first place, but at the same time poses a challenge for the attacker: The jamming signal does not only reach the victim device but also other neighboring devices, preventing precise attack targeting.

In this work, we solve this challenge by leveraging the emerging RIS technology, for the first time, for precise delivery of jamming signals. In particular, we propose a novel approach that allows for environment-adaptive spatial control of wireless jamming signals, granting a new degree of freedom to perform jamming attacks.
We explore this novel method with extensive experimentation and demonstrate that our approach can disable the wireless communication of one or multiple victim devices while leaving neighboring devices unaffected. Notably, our method extends to challenging scenarios where wireless devices are very close to each other: We demonstrate complete denial-of-service of a Wi-Fi device while a second device located at a distance as close as 5 mm remains unaffected, sustaining wireless communication at a data rate of 25 Mbit/s. Lastly, we conclude by proposing potential countermeasures to thwart RIS-based spatial domain wireless jamming attacks.

View More Papers

SNITCH: Leveraging IP Geolocation for Active VPN Detection

Tomer Schwartz (Data and Security Laboratory Fujitsu Research of Europe Ltd), Ofir Manor (Data and Security Laboratory Fujitsu Research of Europe Ltd), Andikan Otung (Data and Security Laboratory Fujitsu Research of Europe Ltd)

Read More

DShield: Defending against Backdoor Attacks on Graph Neural Networks...

Hao Yu (National University of Defense Technology), Chuan Ma (Chongqing University), Xinhang Wan (National University of Defense Technology), Jun Wang (National University of Defense Technology), Tao Xiang (Chongqing University), Meng Shen (Beijing Institute of Technology, Beijing, China), Xinwang Liu (National University of Defense Technology)

Read More

Scale-MIA: A Scalable Model Inversion Attack against Secure Federated...

Shanghao Shi (Virginia Tech), Ning Wang (University of South Florida), Yang Xiao (University of Kentucky), Chaoyu Zhang (Virginia Tech), Yi Shi (Virginia Tech), Y. Thomas Hou (Virginia Polytechnic Institute and State University), Wenjing Lou (Virginia Polytechnic Institute and State University)

Read More

SCAMMAGNIFIER: Piercing the Veil of Fraudulent Shopping Website Campaigns

Marzieh Bitaab (Arizona State University), Alireza Karimi (Arizona State University), Zhuoer Lyu (Arizona State University), Adam Oest (Amazon), Dhruv Kuchhal (Amazon), Muhammad Saad (X Corp.), Gail-Joon Ahn (Arizona State University), Ruoyu Wang (Arizona State University), Tiffany Bao (Arizona State University), Yan Shoshitaishvili (Arizona State University), Adam Doupé (Arizona State University)

Read More