Hao Yu (National University of Defense Technology), Chuan Ma (Chongqing University), Xinhang Wan (National University of Defense Technology), Jun Wang (National University of Defense Technology), Tao Xiang (Chongqing University), Meng Shen (Beijing Institute of Technology, Beijing, China), Xinwang Liu (National University of Defense Technology)

Graph Neural Networks (GNNs) are vulnerable to backdoor attacks, where triggers inserted into original graphs cause adversary-determined predictions. Backdoor attacks on GNNs, typically focusing on node classification tasks, are categorized by dirty- and clean-label attacks and pose challenges due to the interconnected nature of normal and poisoned nodes. Current defenses are indeed circumvented by sophisticated triggers and often rely on strong assumptions borrowed from other domains (e.g., rapid loss drops on poisoned images). They lead to high attack risks, failing to effectively protect against both dirty- and clean-label attacks simultaneously. To tackle these challenges, we propose DShield, a comprehensive defense framework with a discrepancy learning mechanism to defend against various graph backdoor attacks. Specifically, we reveal two vital facts during the attacking process: *semantic drift* where dirty-label attacks modify the semantic information of poisoned nodes, and *attribute over-emphasis* where clean-label attacks exaggerate specific attributes to enforce adversary-determined predictions. Motivated by those, DShield employs a self-supervised learning framework to construct a model without relying on manipulated label information. Subsequently, it utilizes both the self-supervised and backdoored models to analyze discrepancies in semantic information and attribute importance, effectively filtering out poisoned nodes. Finally, DShield trains normal models using the preserved nodes, thereby minimizing the impact of poisoned nodes. Compared with 6 state-of-the-art defenses under 21 backdoor attacks, we conduct evaluations on 7 datasets with 2 victim models to demonstrate that DShield effectively mitigates backdoor threats with minimal degradation in performance on normal nodes. For instance, on the Cora dataset, DShield reduces the attack success rate to 1.33% from 54.47% achieved by the second-best defense Prune while maintaining an 82.15% performance on normal nodes. The source code is available at https://github.com/csyuhao/DShield.

View More Papers

MineShark: Cryptomining Traffic Detection at Scale

Shaoke Xi (Zhejiang University), Tianyi Fu (Zhejiang University), Kai Bu (Zhejiang University), Chunling Yang (Zhejiang University), Zhihua Chang (Zhejiang University), Wenzhi Chen (Zhejiang University), Zhou Ma (Zhejiang University), Chongjie Chen (HANG ZHOU CITY BRAIN CO., LTD), Yongsheng Shen (HANG ZHOU CITY BRAIN CO., LTD), Kui Ren (Zhejiang University)

Read More

Try to Poison My Deep Learning Data? Nowhere to...

Yansong Gao (The University of Western Australia), Huaibing Peng (Nanjing University of Science and Technology), Hua Ma (CSIRO's Data61), Zhi Zhang (The University of Western Australia), Shuo Wang (Shanghai Jiao Tong University), Rayne Holland (CSIRO's Data61), Anmin Fu (Nanjing University of Science and Technology), Minhui Xue (CSIRO's Data61), Derek Abbott (The University of Adelaide, Australia)

Read More

Eclipse Attacks on Monero's Peer-to-Peer Network

Ruisheng Shi (Beijing University of Posts and Telecommunications), Zhiyuan Peng (Beijing University of Posts and Telecommunications), Lina Lan (Beijing University of Posts and Telecommunications), Yulian Ge (Beijing University of Posts and Telecommunications), Peng Liu (Penn State University), Qin Wang (CSIRO Data61), Juan Wang (Wuhan University)

Read More

Decoupling Permission Management from Cryptography for Privacy-Preserving Systems

Ruben De Smet (Department of Engineering Technology (INDI), Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel), Tom Godden (Department of Engineering Technology (INDI), Vrije Universiteit Brussel), Kris Steenhaut (Department of Engineering Technology (INDI), Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel), An Braeken (Department of Engineering Technology (INDI), Vrije Universiteit Brussel)

Read More