Annika Wilde (Ruhr University Bochum), Tim Niklas Gruel (Ruhr University Bochum), Claudio Soriente (NEC Laboratories Europe), Ghassan Karame (Ruhr University Bochum)

An increasing number of distributed platforms combine Trusted Execution Environments (TEEs) with blockchains. Indeed, many hail the combination of TEEs and blockchains a good “marriage”: TEEs bring confidential computing to the blockchain while the consensus layer could help defend TEEs from forking attacks.

In this paper, we systemize how current blockchain solutions integrate TEEs and to what extent they are secure against forking attacks. To do so, we thoroughly analyze 29 proposals for TEE-based blockchains, ranging from academic proposals to production-ready platforms. We uncover a lack of consensus in the community on how to combine TEEs and blockchains. In particular, we identify four broad means to interconnect TEEs with consensus, analyze their limitations, and discuss possible remedies. Our analysis also reveals previously undocumented forking attacks on three production-ready TEE-based blockchains: Ten, Phala, and the Secret Network. We leverage our analysis to propose effective countermeasures against those vulnerabilities; we responsibly disclosed our findings to the developers of each affected platform.

View More Papers

Kronos: A Secure and Generic Sharding Blockchain Consensus with...

Yizhong Liu (Beihang University), Andi Liu (Beihang University), Yuan Lu (Institute of Software Chinese Academy of Sciences), Zhuocheng Pan (Beihang University), Yinuo Li (Xi’an Jiaotong University), Jianwei Liu (Beihang University), Song Bian (Beihang University), Mauro Conti (University of Padua)

Read More

Understanding Data Importance in Machine Learning Attacks: Does Valuable...

Rui Wen (CISPA Helmholtz Center for Information Security), Michael Backes (CISPA Helmholtz Center for Information Security), Yang Zhang (CISPA Helmholtz Center for Information Security)

Read More

Towards Anonymous Chatbots with (Un)Trustworthy Browser Proxies

Dzung Pham, Jade Sheffey, Chau Minh Pham, and Amir Houmansadr (University of Massachusetts Amherst)

Read More

DRAGON: Predicting Decompiled Variable Data Types with Learned Confidence...

Caleb Stewart, Rhonda Gaede, Jeffrey Kulick (University of Alabama in Huntsville)

Read More