Ruixuan Li (Choudhury), Chaithanya Naik Mude (University of Wisconsin-Madison), Sanjay Das (The University of Texas at Dallas), Preetham Chandra Tikkireddi (University of Wisconsin-Madison), Swamit Tannu (University of Wisconsin, Madison), Kanad Basu (University of Texas at Dallas)

As quantum computing rapidly advances, its near-term applications are becoming increasingly evident. However, the high cost and under-utilization of quantum resources are prompting a shift from single-user to multi-user access models. In a multi-tenant environment, where multiple users share one quantum computer, protecting user confidentiality becomes crucial. The varied uses of quantum computers increase the risk that sensitive data encoded by one user could be compromised by others, rendering the protection of data integrity and confidentiality essential.
In the evolving quantum computing landscape, it is imperative to study these security challenges within the scope of realistic threat model assumptions,
wherein an adversarial user can mount practical attacks without relying on any heightened privileges afforded by physical access to a quantum computer or rogue cloud services.
In this paper, we demonstrate the potential of crosstalk as an attack vector for the first time on a Noisy Intermediate Scale Quantum (NISQ) machine, that an adversarial user can exploit within a multi-tenant quantum computing model.
The proposed side-channel attack is conducted with minimal and realistic adversarial privileges, with the overarching aim of uncovering the quantum algorithm being executed by a victim. Crosstalk signatures are used to estimate the presence of CNOT gates in the victim circuit, and subsequently, this information is encoded and classified by a graph-based learning model to identify the victim quantum algorithm. When evaluated on up to 336 benchmark circuits, our attack framework is found to be able to unveil the victim's quantum algorithm with up to 85.7% accuracy.

View More Papers

ICSQuartz: Scan Cycle-Aware and Vendor-Agnostic Fuzzing for Industrial Control...

Corban Villa (New York University Abu Dhabi), Constantine Doumanidis (New York University Abu Dhabi), Hithem Lamri (New York University Abu Dhabi), Prashant Hari Narayan Rajput (InterSystems), Michail Maniatakos (New York University Abu Dhabi)

Read More

Vision: Retiring Scenarios — Enabling Ecologically Valid Measurement in...

Oliver D. Reithmaier (Leibniz University Hannover), Thorsten Thiel (Atmina Solutions), Anne Vonderheide (Leibniz University Hannover), Markus Dürmuth (Leibniz University Hannover)

Read More

Trim My View: An LLM-Based Code Query System for...

Sima Arasteh (University of Southern California), Pegah Jandaghi, Nicolaas Weideman (University of Southern California/Information Sciences Institute), Dennis Perepech, Mukund Raghothaman (University of Southern California), Christophe Hauser (Dartmouth College), Luis Garcia (University of Utah Kahlert School of Computing)

Read More

ASGARD: Protecting On-Device Deep Neural Networks with Virtualization-Based Trusted...

Myungsuk Moon (Yonsei University), Minhee Kim (Yonsei University), Joonkyo Jung (Yonsei University), Dokyung Song (Yonsei University)

Read More