Xiaoyuan Wu (Carnegie Mellon University), Lydia Hu (Carnegie Mellon University), Eric Zeng (Carnegie Mellon University), Hana Habib (Carnegie Mellon University), Lujo Bauer (Carnegie Mellon University)

Apple's App Privacy Report (``privacy report''), released in 2021, aims to
inform iOS users about apps' access to their data and sensors (e.g., contacts,
camera) and, unlike other privacy dashboards, what domains are contacted by apps and websites. To evaluate the
effectiveness of the privacy report, we conducted semi-structured interviews
(textit{n} = 20) to examine users' reactions to the information, their understanding of relevant privacy
implications, and how they might change
their behavior to address privacy concerns. Participants easily understood which
apps accessed data and sensors at certain times on their phones, and knew how to
remove an app's permissions in case of unexpected access. In contrast,
participants had difficulty understanding apps' and websites' network
activities. They were confused about how and why network activities occurred,
overwhelmed by the number of domains their apps contacted, and uncertain about
what remedial actions they could take against potential privacy threats. While
the privacy report and similar tools can increase transparency by presenting
users with details about how their data is handled, we recommend providing more
interpretation or aggregation of technical details, such as the purpose of
contacting domains, to help users make informed decisions.

View More Papers

Explanation as a Watermark: Towards Harmless and Multi-bit Model...

Shuo Shao (Zhejiang University), Yiming Li (Zhejiang University), Hongwei Yao (Zhejiang University), Yiling He (Zhejiang University), Zhan Qin (Zhejiang University), Kui Ren (Zhejiang University)

Read More

Detecting Ransomware Despite I/O Overhead: A Practical Multi-Staged Approach

Christian van Sloun (RWTH Aachen University), Vincent Woeste (RWTH Aachen University), Konrad Wolsing (RWTH Aachen University & Fraunhofer FKIE), Jan Pennekamp (RWTH Aachen University), Klaus Wehrle (RWTH Aachen University)

Read More

GAP-Diff: Protecting JPEG-Compressed Images from Diffusion-based Facial Customization

Haotian Zhu (Nanjing University of Science and Technology), Shuchao Pang (Nanjing University of Science and Technology), Zhigang Lu (Western Sydney University), Yongbin Zhou (Nanjing University of Science and Technology), Minhui Xue (CSIRO's Data61)

Read More

TZ-DATASHIELD: Automated Data Protection for Embedded Systems via Data-Flow-Based...

Zelun Kong (University of Texas at Dallas), Minkyung Park (University of Texas at Dallas), Le Guan (University of Georgia), Ning Zhang (Washington University in St. Louis), Chung Hwan Kim (University of Texas at Dallas)

Read More