Pengzhi Xing (University of Electronic Science and Technology of China), Hongwei Li (University of Electronic Science and Technology of China), Meng Hao (Singapore Management University), Hanxiao Chen (University of Electronic Science and Technology of China), Jia Hu (University of Electronic Science and Technology of China), Dongxiao Liu (University of Electronic Science and Technology of China)

Function Secret Sharing (FSS) has emerged as a pivotal cryptographic tool for secure computation, delivering exceptional online efficiency with constant interaction rounds. However, the reliance on a trusted third party for key generation in existing FSS works compromises both security and practical deployment. In this paper, we introduce efficient distributed key generation schemes for FSS-based distributed point function and distributed comparison function, supporting both input and output to be arithmetic-shared. We further design crucial FSS-based components optimized for online efficiency, serving as the building blocks for advanced protocols. Finally, we propose an efficient framework for evaluating complex trigonometric functions, ubiquitous in scientific computations. Our framework leverages the periodic property of trigonometric functions, which reduces the bit length of input during FSS evaluation. This mitigates the potential performance bottleneck for FSS-based protocols incurred by bit length. Extensive empirical evaluations on real-world applications demonstrate a latency reduction of up to $14.73times$ and a communication cost decrease ranging from $27.67sim 184.42 times$ over the state-of-the-art work.

View More Papers

The Midas Touch: Triggering the Capability of LLMs for...

Yi Yang (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China; School of Cyber Security, University of Chinese Academy of Sciences, China), Jinghua Liu (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China; School of Cyber Security, University of Chinese Academy of Sciences, China), Kai Chen (Institute of Information Engineering, Chinese Academy of…

Read More

type++: Prohibiting Type Confusion with Inline Type Information

Nicolas Badoux (EPFL), Flavio Toffalini (Ruhr-Universität Bochum, EPFL), Yuseok Jeon (UNIST), Mathias Payer (EPFL)

Read More

A Method to Facilitate Membership Inference Attacks in Deep...

Zitao Chen (University of British Columbia), Karthik Pattabiraman (University of British Columbia)

Read More

Work-in-Progress: Detecting Browser-in-the-Browser Attacks from Their Behaviors and DOM...

Ryusei Ishikawa, Soramichi Akiyama, and Tetsutaro Uehara (Ritsumeikan University)

Read More