Qiyang Song (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyber Security, University of Chinese Academy of Sciences), Heqing Huang (Institute of Information Engineering, Chinese Academy of Sciences), Xiaoqi Jia (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyber Security, University of Chinese Academy of Sciences), Yuanbo Xie (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyber Security, University of Chinese Academy of Sciences), Jiahao Cao (Institute for Network Sciences and Cyberspace, Tsinghua University)

Reentrancy vulnerabilities in Ethereum smart contracts have caused significant financial losses, prompting the creation of several automated reentrancy detectors. However, these detectors frequently yield a high rate of false positives due to coarse detection rules, often misclassifying contracts protected by anti-reentrancy patterns as vulnerable. Thus, there is a critical need for the development of specialized automated tools to assist these detectors in accurately identifying anti-reentrancy patterns. While existing code analysis techniques show promise for this specific task, they still face significant challenges in recognizing anti-reentrancy patterns. These challenges are primarily due to the complex and varied features of anti-reentrancy patterns, compounded by insufficient prior knowledge about these features.

This paper introduces AutoAR, an automated recognition system designed to explore and identify prevalent anti-reentrancy patterns in Ethereum contracts. AutoAR utilizes a specialized graph representation, RentPDG, combined with a data filtration approach, to effectively capture anti-reentrancy-related semantics from a large pool of contracts. Based on RentPDGs extracted from these contracts, AutoAR employs a recognition model that integrates a graph auto-encoder with a clustering technique, specifically tailored for precise anti-reentrancy pattern identification. Experimental results show AutoAR can assist existing detectors in identifying 12 prevalent anti-reentrancy patterns with 89% accuracy, and when integrated into the detection workflow, it significantly reduces false positives by over 85%.

View More Papers

Careful About What App Promotion Ads Recommend! Detecting and...

Shang Ma (University of Notre Dame), Chaoran Chen (University of Notre Dame), Shao Yang (Case Western Reserve University), Shifu Hou (University of Notre Dame), Toby Jia-Jun Li (University of Notre Dame), Xusheng Xiao (Arizona State University), Tao Xie (Peking University), Yanfang Ye (University of Notre Dame)

Read More

UI-CTX: Understanding UI Behaviors with Code Contexts for Mobile...

Jiawei Li (Beihang University & National University of Singapore), Jiahao Liu (National University of Singapore), Jian Mao (Beihang University), Jun Zeng (National University of Singapore), Zhenkai Liang (National University of Singapore)

Read More

PhantomLiDAR: Cross-modality Signal Injection Attacks against LiDAR

Zizhi Jin (Zhejiang University), Qinhong Jiang (Zhejiang University), Xuancun Lu (Zhejiang University), Chen Yan (Zhejiang University), Xiaoyu Ji (Zhejiang University), Wenyuan Xu (Zhejiang University)

Read More