Shaoyuan Xie (University of California, Irvine), Mohamad Habib Fakih (University of California, Irvine), Junchi Lu (University of California, Irvine), Fayzah Alshammari (University of California, Irvine), Ningfei Wang (University of California, Irvine), Takami Sato (University of California, Irvine), Halima Bouzidi (University of California Irvine), Mohammad Abdullah Al Faruque (University of California, Irvine), Qi Alfred Chen (University of California, Irvine)

Autonomous Target Tracking (ATT) systems, especially ATT drones, are widely used in applications such as surveillance, border control, and law enforcement, while also being misused in stalking and destructive actions. Thus, the security of ATT is highly critical for real-world applications. Under the scope, we present a new type of attack: textit{distance-pulling attacks} (DPA) and a systematic study of it, which exploits vulnerabilities in ATT systems to dangerously reduce tracking distances, leading to drone capturing, increased susceptibility to sensor attacks, or even physical collisions. To achieve these goals, we present textit{FlyTrap}, a novel physical-world attack framework that employs an adversarial umbrella as a deployable and domain-specific attack vector. FlyTrap is specifically designed to meet key desired objectives in attacking ATT drones: physical deployability, closed-loop effectiveness, and spatial-temporal consistency. Through novel progressive distance-pulling strategy and controllable spatial-temporal consistency designs, FlyTrap manipulates ATT drones in real-world setups to achieve significant system-level impacts. Our evaluations include new datasets, metrics, and closed-loop experiments on real-world white-box and even commercial ATT drones, including DJI and HoverAir. Results demonstrate FlyTrap's ability to reduce tracking distances within the range to be captured, sensor attacked, or even directly crashed, highlighting urgent security risks and practical implications for the safe deployment of ATT systems.

View More Papers

How to Effectively Trace Provenance on Windows Endpoint Detection...

Jason Liu, Muhammad Adil Inam, Akul Goyal, Dylen Greenenwald (University of Illinois at Urbana-Champaign), Saurav Chittal (Purdue University), Adam Bates (University of Illinois at Urbana-Champaign)

Read More

BSFuzzer: Context-Aware Semantic Fuzzing for BLE Logic Flaw Detection

Ting Yang (Xidian University and Kanazawa University), Yue Qin (Central University of Finance and Economics), Lan Zhang (Northern Arizona University), Zhiyuan Fu (Hainan University), Junfan Chen (Hainan University), Jice Wang (Hainan University), Shangru Zhao (University of Chinese Academy of Sciences), Qi Li (Tsinghua University), Ruidong Li (Kanazawa University), He Wang (Xidian University), Yuqing Zhang (University…

Read More

Revealing The Secret Power: How Algorithms Can Influence Content...

Alessandro Galeazzi (University of Padua), Pujan Paudel (Boston University), Mauro Conti (University of Padua), Emiliano De Cristofaro (UC Riverside), Gianluca Stringhini (Boston University)

Read More