Yan Pang (University of Virginia), Wenlong Meng (University of Virginia), Xiaojing Liao (Indiana University Bloomington), Tianhao Wang (University of Virginia)

With the rapid development of large language models, the potential threat of their malicious use, particularly in generating phishing content, is becoming increasingly prevalent. Leveraging the capabilities of LLMs, malicious users can synthesize phishing emails that are free from spelling mistakes and other easily detectable features. Furthermore, such models can generate topic-specific phishing messages, tailoring content to the target domain and increasing the likelihood of success.

Detecting such content remains a significant challenge, as LLM-generated phishing emails often lack clear or distinguishable linguistic features. As a result, most existing semantic-level detection approaches struggle to identify them reliably. While certain LLM-based detection methods have shown promise, they suffer from high computational costs and are constrained by the performance of the underlying language model, making them impractical for large-scale deployment.

In this work, we aim to address this issue. We propose Paladin, which embeds trigger-tag associations into vanilla LLM using various insertion strategies, creating them into instrumented LLMs. When an instrumented LLM generates content related to phishing, it will automatically include detectable tags, enabling easier identification. Based on the design on implicit and explicit triggers and tags, we consider four distinct scenarios in our work. We evaluate our method from three key perspectives: stealthiness, effectiveness, and robustness, and compare it with existing baseline methods. Experimental results show that our method outperforms the baselines, achieving over 90% detection accuracy across all scenarios.

View More Papers

Unveiling BYOVD Threats: Malware's Use and Abuse of Kernel...

Andrea Monzani (University of Milan), Antonio Parata (University of Milan), Andrea Oliveri (EURECOM), Simone Aonzo (EURECOM), Davide Balzarotti (EURECOM), Andrea Lanzi (University of Milan)

Read More

More than Meets the Eye: Understanding the Effect of...

Mete Harun Akcay (Abo Academy University), Siddarth Prakash Rao (Nokia Bell Labs), Alexandros Bakas (Nokia Bell Labs), Buse Atli (Linkoping University)

Read More

Accurate Identification of the Vulnerability-Introducing Commit based on Differential...

Qixuan Guo (Beijing Jiaotong University), Yongzhong He (Beijing Jiaotong University)

Read More