Quan Yuan (Zhejiang University), Xiaochen Li (University of North Carolina at Greensboro), Linkang Du (Xi'an Jiaotong University), Min Chen (Vrije Universiteit Amsterdam), Mingyang Sun (Peking University), Yunjun Gao (Zhejiang University), Shibo He (Zhejiang University), Jiming Chen (Zhejiang University), Zhikun Zhang (Zhejiang University)

Causal inference plays a crucial role in scientific research across multiple disciplines. Estimating causal effects, particularly the average treatment effect (ATE), from observational data has garnered significant attention. However, computing the ATE from real-world observational data poses substantial privacy risks to users. Differential privacy, which offers strict theoretical guarantees, has emerged as a standard approach for privacy-preserving data analysis. However, existing differentially private ATE estimation works rely on specific assumptions, provide limited privacy protection, or fail to offer comprehensive information protection.

To this end, we introduce PrivATE, a practical ATE estimation framework that ensures differential privacy. In fact, various scenarios require varying levels of privacy protection. For example, only test scores are generally sensitive information in education evaluation, while all types of medical record data are usually private. To accommodate different privacy requirements, we design two levels (i.e., label-level and sample-level) of privacy protection in PrivATE. By deriving an adaptive matching limit, PrivATE effectively balances noise-induced error and matching error, leading to a more accurate estimate of ATE. Our evaluation validates the effectiveness of PrivATE. PrivATE outperforms the baselines on all datasets and privacy budgets.

View More Papers

QNBAD: Quantum Noise-induced Backdoor Attacks against Zero Noise Extrapolation

Cheng Chu (Indiana University Bloomington), Qian Lou (University of Central Florida), Fan Chen (Indiana University Bloomington), Lei Jiang (Indiana University Bloomington)

Read More

Tutorial: Introducing the Carbanak Attack Engagement, Version 2

Akul Goyal (University of Illinois at Urbana-Champaign), Saurav Chittal (Purdue University), Dylen Greenenwald, and Adam Bates (University of Illinois at Urbana-Champaign)

Read More

DualStrike: Accurate, Real-time Eavesdropping and Injection of Keystrokes on...

Xiaomeng Chen (Shanghai Jiao Tong University), Jike Wang (Shanghai Jiao Tong University), Zhenyu Chen (Shanghai Jiao Tong University), Qi Alfred Chen (University of California, Irvine), Xinbing Wang (Shanghai Jiao Tong University), Dongyao Chen (Shanghai Jiao Tong University)

Read More