Khashayar Khajavi (Simon Fraser University), Tao Wang (Simon Fraser University)

Website fingerprinting (WF) attacks remain a significant threat to encrypted traffic, prompting the development of a wide range of defenses. Among these, two prominent classes are regularization-based defenses, which shape traffic using fixed padding rules, and supersequence-based approaches, which conceal traces among predefined patterns.
In this work, we present a unified framework for designing an adaptive WF defense that combines the effectiveness of regularization with the provable security of supersequence-style grouping.
The scheme first extracts behavioural patterns from traces and clusters them into $(k,l)$-diverse anonymity sets; an early-time-series classifier (adapted from ECDIRE) then switches from a conservative global set of regularization parameters to the lighter, set-specific parameters.
We instantiate the design as emph{Adaptive Tamaraw}, a variant of Tamaraw that assigns padding parameters on a per-cluster basis while retaining its original information-theoretic guarantee. Comprehensive experiments on public real-world datasets confirm the benefits.
By tuning $k$, operators can trade privacy for efficiency: in its high-privacy mode, Adaptive Tamaraw pushes the bound on any attacker's accuracy below textbf{30%}, whereas in efficiency-centred settings it cuts total overhead by textbf{99} percentage points compared with classic Tamaraw.

View More Papers

SysArmor: The Practice of Integrating Provenance Analysis into Endpoint...

Shaofei Li, Jiandong Jin, Hanlin Jiang, Yi Huang (Peking University), Yifei Bao (Jilin University), Yuhan Meng, Fengwei Hong, Zheng Huang (Peking University), Peng Jiang (Southeast University), Ding Li (Peking University)

Read More

SoK: Cryptographic Authenticated Dictionaries

Harjasleen Malvai (University of Illinois, Urbana-Champaign), Francesca Falzon (ETH Zürich), Andrew Zitek-Estrada (EPFL), Sarah Meiklejohn (University College London), Joseph Bonneau (NYU)

Read More

From Noise to Signal: Precisely Identify Affected Packages of...

Yingyuan Pu (QI-ANXIN Technology Research Institute), Lingyun Ying (QI-ANXIN Technology Research Institute), Yacong Gu (Tsinghua University; Tsinghua University-QI-ANXIN Group JCNS)

Read More