Kabilan Mahathevan (Department of Computer Science, Virginia Tech, Blacksburg), Yining Zhang (Department of Computer Science, Virginia Tech, Blacksburg), Muhammad Ali Gulzar (Department of Computer Science, Virginia Tech, Blacksburg), Kirshanthan Sundararajah (Department of Computer Science, Virginia Tech, Blacksburg)

Sparse Tensor Compilers (STCs) have emerged as critical infrastructure for optimizing high-dimensional data analytics and machine learning workloads. The STCs must synthesize complex, irregular control flow for various compressed storage formats directly from high-level declarative specifications, thereby making them highly susceptible to subtle correctness defects. Existing testing frameworks, which rely on mutating computation graphs restricted to a standard vocabulary of operators, fail to exercise the arbitrary loop synthesis capabilities of these compilers. Furthermore, generic grammar-based fuzzers struggle to generate valid inputs due to the strict rules governing how indices are reused across multiple tensors.

In this paper, we present TENSURE, the first extensible blackbox fuzzing framework specifically designed for the testing of STCs. TENSURE leverages Einstein Summation (Einsum) notation as a general input abstraction, enabling the generation of complex, unconventional tensor contractions that expose corner cases in the code-generation phases of STCs. We propose a novel constraint-based generation algorithm that guarantees 100% semantic validity of synthesized kernels, significantly outperforming the ∼3.3% validity rate of baseline grammar fuzzers. To enable metamorphic testing without a trusted reference, we introduce a set of semantic-preserving mutation operators that exploit algebraic commutativity and heterogeneity in storage formats. Our evaluation on two state-of-the-art systems, TACO and Finch, reveals widespread fragility, particularly in TACO, where TENSURE exposed crashes or silent miscompilations in a majority of generated test cases. These findings underscore the critical need for specialized testing tools in the sparse compilation ecosystem.

View More Papers

Light into Darkness: Demystifying Profit Strategies Throughout the MEV...

Feng Luo (The Hong Kong Polytechnic University), Zihao Li (The Hong Kong Polytechnic University), Wenxuan Luo (University of Electronic Science and Technology of China), Zheyuan He (University of Electronic Science and Technology of China), Xiapu Luo (The Hong Kong Polytechnic University), Zuchao Ma (The Hong Kong Polytechnic University), Shuwei Song (University of Electronic Science and…

Read More

IoTBec: An Accurate and Efficient Recurring Vulnerability Detection Framework...

Haoran Yang (Institute of Information Engineering, Chinese Academy of Sciences), Jiaming Guo (Institute of Information Engineering, Chinese Academy of Sciences), Shuangning Yang (School of Internet, Anhui University), Guoli Zhao (Institute of Information Engineering, Chinese Academy of Sciences), Qingqi Liu (Institute of Information Engineering, Chinese Academy of Sciences), Chi Zhang (Institute of Information Engineering, Chinese Academy…

Read More

Achieving Zen: Combining Mathematical and Programmatic Deep Learning Model...

David Oygenblik (Georgia Institute of Technology), Dinko Dermendzhiev (Georgia Institute of Technology), Filippos Sofias (Georgia Institute of Technology), Mingxuan Yao (Georgia Institute of Technology), Haichuan Xu (Georgia Institute of Technology), Runze Zhang (Georgia Institute of Technology), Jeman Park (Kyung Hee University), Amit Kumar Sikder (Iowa State University), Brendan Saltaformaggio (Georgia Institute of Technology)

Read More