Panagiotis Papadopoulos (FORTH-ICS, Greece), Panagiotis Ilia (FORTH-ICS), Michalis Polychronakis (Stony Brook University, USA), Evangelos P. Markatos (FORTH-ICS, Greece), Sotiris Ioannidis (FORTH-ICS, Greece), Giorgos Vasiliadis (FORTH-ICS, Greece)

The proliferation of web applications has essentially transformed modern browsers into small but powerful operating systems. Upon visiting a website, user devices run implicitly trusted script code, the execution of which is confined within the browser to prevent any interference with the user’s system. Recent JavaScript APIs, however, provide advanced capabilities that not only enable feature-rich web applications, but also allow attackers to perform malicious operations despite the confined nature of JavaScript code execution.
In this paper, we demonstrate the powerful capabilities that modern browser APIs provide to attackers by presenting MarioNet: a framework that allows a remote malicious entity to control a visitor’s browser and abuse its resources for unwanted computation or harmful operations, such as cryptocurrency mining, password-cracking, and DDoS. MarioNet relies solely on already available HTML5 APIs, without requiring the installation of any additional software. In contrast to previous browser- based botnets, the persistence and stealthiness characteristics of MarioNet allow the malicious computations to continue in the background of the browser even after the user closes the window or tab of the initially visited malicious website. We present the design, implementation, and evaluation of our prototype system, which is compatible with all major browsers, and discuss potential defense strategies to counter the threat of such persistent in- browser attacks. Our main goal is to raise awareness about this new class of attacks, and inform the design of future browser APIs so that they provide a more secure client-side environment for web applications.

View More Papers

IoTGuard: Dynamic Enforcement of Security and Safety Policy in...

Z. Berkay Celik (Penn State University), Gang Tan (Penn State University), Patrick McDaniel (Penn State University)

Read More

Neural Machine Translation Inspired Binary Code Similarity Comparison beyond...

Fei Zuo (University of South Carolina), Xiaopeng Li (University of South Carolina), Patrick Young (Temple University), Lannan Luo (University of South Carolina), Qiang Zeng (University of South Carolina), Zhexin Zhang (University of South Carolina)

Read More

Tranco: A Research-Oriented Top Sites Ranking Hardened Against Manipulation

Victor Le Pochat (imec-DistriNet, KU Leuven), Tom Van Goethem (imec-DistriNet, KU Leuven), Samaneh Tajalizadehkhoob (Delft University of Technology), Maciej Korczyński (Grenoble Alps University), Wouter Joosen (imec-DistriNet, KU Leuven)

Read More

The use of TLS in Censorship Circumvention

Sergey Frolov (University of Colorado Boulder), Eric Wustrow (University of Colorado Boulder)

Read More