Menghao Zhang (Tsinghua University), Guanyu Li (Tsinghua University), Shicheng Wang (Tsinghua University), Chang Liu (Tsinghua University), Ang Chen (Rice University), Hongxin Hu (Clemson University), Guofei Gu (Texas A&M University), Qi Li (Tsinghua University), Mingwei Xu (Tsinghua University), Jianping Wu (Tsinghua University)

Distributed Denial-of-Service (DDoS) attacks have become a critical threat to the Internet. Due to the increasing number of vulnerable Internet of Things (IoT) devices, attackers can easily compromise a large set of nodes and launch highvolume DDoS attacks from the botnets. State-of-the-art DDoS defenses, however, have not caught up with the fast development of the attacks. Middlebox-based defenses can achieve high performance with specialized hardware; however, these defenses incur a high cost, and deploying new defenses typically requires a device upgrade. On the other hand, software-based defenses are highly flexible, but software-based packet processing leads to high performance overheads. In this paper, we propose Poseidon, a system that addresses these limitations in today’s DDoS defenses. It leverages emerging programmable switches, which can be reconfigured in the field without additional hardware upgrade. Users of Poseidon can specify their defense strategies in a modular fashion in the form of a set of defense primitives; this can be further customized easily for each network and extended to include new defenses. Poseidon then maps the defense primitives to run on programmable switches—and when necessary, on server software—for effective defense. When attacks change, Poseidon can reconfigure the underlying defense primitives to respond to the new attack patterns. Evaluations using our prototype demonstrate that Poseidon can effectively defend against highvolume attacks, easily support customization of defense strategies, and adapt to dynamic attacks with low overheads.

View More Papers

ConTExT: A Generic Approach for Mitigating Spectre

Michael Schwarz (Graz University of Technology), Moritz Lipp (Graz University of Technology), Claudio Canella (Graz University of Technology), Robert Schilling (Graz University of Technology and Know-Center GmbH), Florian Kargl (Graz University of Technology), Daniel Gruss (Graz University of Technology)

Read More

Are You Going to Answer That? Measuring User Responses...

Imani N. Sherman (University of Florida), Jasmine D. Bowers (University of Florida), Keith McNamara Jr. (University of Florida), Juan E. Gilbert (University of Florida), Jaime Ruiz (University of Florida), Patrick Traynor (University of Florida)

Read More

HotFuzz: Discovering Algorithmic Denial-of-Service Vulnerabilities Through Guided Micro-Fuzzing

William Blair (Boston University), Andrea Mambretti (Northeastern University), Sajjad Arshad (Northeastern University), Michael Weissbacher (Northeastern University), William Robertson (Northeastern University), Engin Kirda (Northeastern University), Manuel Egele (Boston University)

Read More

Automated Discovery of Cross-Plane Event-Based Vulnerabilities in Software-Defined Networking

Benjamin E. Ujcich (University of Illinois at Urbana-Champaign), Samuel Jero (MIT Lincoln Laboratory), Richard Skowyra (MIT Lincoln Laboratory), Steven R. Gomez (MIT Lincoln Laboratory), Adam Bates (University of Illinois at Urbana-Champaign), William H. Sanders (University of Illinois at Urbana-Champaign), Hamed Okhravi (MIT Lincoln Laboratory)

Read More