Shiqing Luo (Georgia State University), Anh Nguyen (Georgia State University), Chen Song (San Diego State University), Feng Lin (Zhejiang University), Wenyao Xu (SUNY Buffalo), Zhisheng Yan (Georgia State University)

The increasing popularity of virtual reality (VR) in a wide spectrum of applications has generated sensitive personal data such as medical records and credit card information. While protecting such data from unauthorized access is critical, directly applying traditional authentication methods (e.g., PIN) through new VR input modalities such as remote controllers and head navigation would cause security issues. The authentication action can be purposefully observed by attackers to infer the authentication input. Unlike any other mobile devices, VR presents immersive experience via a head-mounted display (HMD) that fully covers users' eye area without public exposure. Leveraging this feature, we explore human visual system (HVS) as a novel biometric authentication tailored for VR platforms. While previous works used eye globe movement (gaze) to authenticate smartphones or PCs, they suffer from a high error rate and low stability since eye gaze is highly dependent on cognitive states. In this paper, we explore the HVS as a whole to consider not just the eye globe movement but also the eyelid, extraocular muscles, cells, and surrounding nerves in the HVS. Exploring HVS biostructure and unique HVS features triggered by immersive VR content can enhance authentication stability. To this end, we present OcuLock, an HVS-based system for reliable and unobservable VR HMD authentication. OcuLock is empowered by an electrooculography (EOG) based HVS sensing framework and a record-comparison driven authentication scheme. Experiments through 70 subjects show that OcuLock is resistant against common types of attacks such as impersonation attack and statistical attack with Equal Error Rates as low as 3.55% and 4.97% respectively. More importantly, OcuLock maintains a stable performance over a 2-month period and is preferred by users when compared to other potential approaches.

View More Papers

Adversarial Classification Under Differential Privacy

Jairo Giraldo (University of Utah), Alvaro Cardenas (UC Santa Cruz), Murat Kantarcioglu (UT Dallas), Jonathan Katz (George Mason University)

Read More

Data-Driven Debugging for Functional Side Channels

Saeid Tizpaz-Niari (University of Colorado Boulder), Pavol Černý (TU Wien), Ashutosh Trivedi (University of Colorado Boulder)

Read More

CDN Judo: Breaking the CDN DoS Protection with Itself

Run Guo (Tsinghua University), Weizhong Li (Tsinghua University), Baojun Liu (Tsinghua University), Shuang Hao (University of Texas at Dallas), Jia Zhang (Tsinghua University), Haixin Duan (Tsinghua University), Kaiwen Sheng (Tsinghua University), Jianjun Chen (ICSI), Ying Liu (Tsinghua University)

Read More

MassBrowser: Unblocking the Censored Web for the Masses, by...

Milad Nasr (University of Massachusetts Amherst), Hadi Zolfaghari (University of Massachusetts Amherst), Amir Houmansadr (University of Massachusetts Amherst), Amirhossein Ghafari (University of Massachusetts Amherst)

Read More