Faysal Hossain Shezan (University of Virginia), Kaiming Cheng (University of Virginia), Zhen Zhang (Johns Hopkins University), Yinzhi Cao (Johns Hopkins University), Yuan Tian (University of Virginia)

Permission-based access control enables users to manage and control their sensitive data for third-party applications. In an ideal scenario, third-party application includes enough details to illustrate the usage of such data, while the reality is that many descriptions of third-party applications are vague about their security or privacy activities. As a result, users are left with insufficient details when granting sensitive data to these applications.

Prior works, such as WHYPER and AutoCog, have addressed the aforementioned problem via a so-called permission correlation system. Such a system correlates third-party applications' description with their requested permissions and determines an application as overprivileged if a mismatch is found. However, although prior works are successful on their own platforms, such as Android eco-system, they are not directly applicable to new platforms, such as Chrome extensions and IFTTT, without extensive data labeling and parameter tuning.

In this paper, we design, implement, and evaluate a novel system, called TKPERM, which transfers knowledges of permission correlation systems across platforms. Our key idea is that these varied platforms with different use cases---like smartphones, IoTs, and desktop browsers---are all user-facing and thus allow the knowledges to be transferrable across platforms. Particularly, we adopt a greedy selection algorithm that picks the best source domains to transfer to the target permission on a new platform.

TKPERM achieves 90.02% overall F1 score after transfer, which is 12.62% higher than the one of a model trained directly on the target domain without transfer. Particularly, TKPERM has 91.83% F1 score on IFTTT, 89.13% F1 score on Chrome-Extension, and 89.1% F1 score on SmartThings. TKPERM also successfully identified many real-world overprivileged applications, such as a gaming hub requesting location permissions without legitimate use.

View More Papers

Precisely Characterizing Security Impact in a Flood of Patches...

Qiushi Wu (University of Minnesota), Yang He (University of Minnesota), Stephen McCamant (University of Minnesota), Kangjie Lu (University of Minnesota)

Read More

IMP4GT: IMPersonation Attacks in 4G NeTworks

David Rupprecht (Ruhr University Bochum), Katharina Kohls (Ruhr University Bochum), Thorsten Holz (Ruhr University Bochum), Christina Poepper (NYU Abu Dhabi)

Read More

Carnus: Exploring the Privacy Threats of Browser Extension Fingerprinting

Soroush Karami (University of Illinois at Chicago), Panagiotis Ilia (University of Illinois at Chicago), Konstantinos Solomos (University of Illinois at Chicago), Jason Polakis (University of Illinois at Chicago)

Read More

SymTCP: Eluding Stateful Deep Packet Inspection with Automated Discrepancy...

Zhongjie Wang (University of California, Riverside), Shitong Zhu (University of California, Riverside), Yue Cao (University of California, Riverside), Zhiyun Qian (University of California, Riverside), Chengyu Song (University of California, Riverside), Srikanth V. Krishnamurthy (University of California, Riverside), Kevin S. Chan (U.S. Army Research Lab), Tracy D. Braun (U.S. Army Research Lab)

Read More