Kai Li (Syracuse University), Jiaqi Chen (Syracuse University), Xianghong Liu (Syracuse University), Yuzhe Tang (Syracuse University), XiaoFeng Wang (Indiana University Bloomington), Xiapu Luo (Hong Kong Polytechnic University)

Modern blockchains have evolved from cryptocurrency substrates to trust-decentralization platforms, supporting a wider variety of decentralized applications known as DApps. Blockchain remote procedure call (RPC) services emerge as an intermediary connecting the DApps to a blockchain network. In this work, we identify the free contract-execution capabilities that widely exist in blockchain RPCs as a vulnerability of denial of service (DoS) and present the DoERS attack, a Denial of Ethereum RPC service that incurs zero Ether cost to the attacker.

To understand the DoERS exploitability in the wild, we conduct a systematic measurement study on nine real-world RPC services which control most DApp clients' connection to the Ethereum mainnet. In particular, we propose a novel measurement technique based on orphan transactions to discover the previously unknown behaviors inside the blackbox RPC services, including load balancing and gas limiting. Further DoERS strategies are proposed to evade the protection intended by these behaviors.

We evaluate the effectiveness of DoERS attacks on deployed RPC services with minimal service interruption. The result shows that all the nine services tested (as of Apr. 2020) are vulnerable to DoERS attacks that can result in the service latency increased by $2.1Xsim{}50X$. Some of these attacks require only a single request. In addition, on a local Ethereum node protected by a very restrictive limit of $0.65$ block gas, sending 150 DoERS requests per second can slow down the block synchronization of the victim node by $91%$.

We propose mitigation techniques against DoERS without dropping service usability, via unpredictable load balancing, performance anomaly detection, and others. These techniques can be integrated into a RPC service transparently to its clients.

View More Papers

Demo #4: Attacking Tesla Model X’s Autopilot Using Compromised...

Ben Nassi (Ben-Gurion University of the Negev), Yisroel Mirsky (Ben-Gurion University of the Negev, Georgia Tech), Dudi Nassi, Raz Ben Netanel (Ben-Gurion University of the Negev), Oleg Drokin (Independent Researcher), and Yuval Elovici (Ben-Gurion University of the Negev) Best Demo Award Winner ($300 cash prize)!

Read More

Scenario-Driven Assessment of Cyber Risk Perception at the Security...

Simon Parkin (TU Delft), Kristen Kuhn, Siraj Ahmed Shaikh (Coventry University)

Read More

Denial-of-Service Attacks on C-V2X Networks

Natasa Trkulja, David Starobinski (Boston University), and Randall Berry (Northwestern University)

Read More

Demo #1: Curricular Reinforcement Learning for Robust Policy in...

Yunzhe Tian, Yike Li, Yingxiao Xiang, Wenjia Niu, Endong Tong, and Jiqiang Liu (Beijing Jiaotong University)

Read More