Shi-Feng Sun (Monash University, Australia), Ron Steinfeld (Monash University, Australia), Shangqi Lai (Monash University, Australia), Xingliang Yuan (Monash University, Australia), Amin Sakzad (Monash University, Australia), Joseph Liu (Monash University, Australia), ‪Surya Nepal‬ (Data61, CSIRO, Australia), Dawu Gu (Shanghai Jiao Tong University, China)

In Dynamic Symmetric Searchable Encryption (DSSE), forward privacy ensures that previous search queries cannot be associated with future updates, while backward privacy guarantees that subsequent search queries cannot be associated with deleted documents in the past. In this work, we propose a generic forward and backward-private DSSE scheme, which is, to the best of our knowledge, the first practical and non-interactive Type-II backward-private DSSE scheme not relying on trusted execution environments. To this end, we first introduce a new cryptographic primitive, named Symmetric Revocable Encryption (SRE), and propose a modular construction from some succinct cryptographic primitives. Then we present our DSSE scheme based on the proposed SRE, and instantiate it with lightweight symmetric primitives. At last, we implement our scheme and
compare it with the most efficient Type-II backward-private scheme to date (Demertzis et al., NDSS 2020). In a typical network environment, our result shows that the search in our scheme outperforms it by 2-11x under the same security notion.

View More Papers

User Expectations and Understanding of Encrypted DNS Settings

Alexandra Nisenoff, Nick Feamster, Madeleine A Hoofnagle†, Sydney Zink. (University of Chicago and †Northwestern)

Read More

Is Your Firmware Real or Re-Hosted? A case study...

Abraham A. Clements, Logan Carpenter, William A. Moeglein (Sandia National Laboratories), Christopher Wright (Purdue University)

Read More

The Nuts and Bolts of Building FlowLens

Diogo Barradas (Instituto Superior Técnico, Universidade de Lisboa)

Read More

Low-risk Privacy-preserving Electric Vehicle Charging with Payments

Andreas Unterweger, Fabian Knirsch, Clemens Brunner and Dominik Engel (Center for Secure Energy Informatics, Salzburg University of Applied Sciences, Puch bei Hallein, Austria)

Read More