Junjie Liang (The Pennsylvania State University), Wenbo Guo (The Pennsylvania State University), Tongbo Luo (Robinhood), Vasant Honavar (The Pennsylvania State University), Gang Wang (University of Illinois at Urbana-Champaign), Xinyu Xing (The Pennsylvania State University)

Supervised machine learning classifiers have been widely used for attack detection, but their training requires abundant high-quality labels. Unfortunately, high-quality labels are difficult to obtain in practice due to the high cost of data labeling and the constant evolution of attackers. Without such labels, it is challenging to train and deploy targeted countermeasures.

In this paper, we propose FARE, a clustering method to enable fine-grained attack categorization under low-quality labels. We focus on two common issues in data labels: 1) missing labels for certain attack classes or families; and 2) only having coarse-grained labels available for different attack types. The core idea of FARE is to take full advantage of the limited labels while using the underlying data distribution to consolidate the low-quality labels. We design an ensemble model to fuse the results of multiple unsupervised learning algorithms with the given labels to mitigate the negative impact of missing classes and coarse-grained labels. We then train an input transformation network to map the input data into a low-dimensional latent space for fine-grained clustering. Using two security datasets (Android malware and network intrusion traces), we show that FARE significantly outperforms the state-of-the-art (semi-)supervised learning methods in clustering quality/correctness. Further, we perform an initial deployment of FARE by working with a large e-commerce service to detect fraudulent accounts. With real-world A/B tests and manual investigation, we demonstrate the effectiveness of FARE to catch previously-unseen frauds.

View More Papers

POSEIDON: Privacy-Preserving Federated Neural Network Learning

Sinem Sav (EPFL), Apostolos Pyrgelis (EPFL), Juan Ramón Troncoso-Pastoriza (EPFL), David Froelicher (EPFL), Jean-Philippe Bossuat (EPFL), Joao Sa Sousa (EPFL), Jean-Pierre Hubaux (EPFL)

Read More

Denial-of-Service Attacks on C-V2X Networks

Natasa Trkulja, David Starobinski (Boston University), and Randall Berry (Northwestern University)

Read More

Differentially Private Health Tokens for Estimating COVID-19 Risk

David Butler, Chris Hicks, James Bell, Carsten Maple, and Jon Crowcroft (The Alan Turing Institute)

Read More

Panel – Experiment Artifact Sharing: Challenges and Solutions

Moderator: Laura Tinnel (SRI International) Panelists: Clémentine Maurice (CNRS, IRIS); Martin Rosso (Eindhoven University of Technology); Eric Eide (U. Utah)

Read More