Faraz Naseem (Florida International University), Ahmet Aris (Florida International University), Leonardo Babun (Florida International University), Ege Tekiner (Florida International University), A. Selcuk Uluagac (Florida International University)

Emerging WebAssembly(Wasm)-based cryptojacking malware covertly uses the computational resources of users without their consent or knowledge. Indeed, most victims of this malware are unaware of such unauthorized use of their computing power due to techniques employed by cryptojacking malware authors such as CPU throttling and obfuscation. A number of dynamic analysis-based detection mechanisms exist that aim to circumvent such techniques. However, since these mechanisms use dynamic features, the collection of such features, as well as the actual detection of the malware, require that the cryptojacking malware run for a certain amount of time, effectively mining for that period, and therefore causing significant overhead. To solve these limitations, in this paper, we propose MINOS, a novel, extremely lightweight cryptojacking detection system that uses deep learning techniques to accurately detect the presence of unwarranted Wasm-based mining activity in real-time. MINOS uses an image-based classification technique to distinguish between benign webpages and those using Wasm to implement unauthorized mining. Specifically, the classifier implements a convolutional neural network (CNN) model trained with a comprehensive dataset of current malicious and benign Wasm binaries. MINOS achieves exceptional accuracy with a low TNR and FPR. Moreover, our extensive performance analysis of MINOS shows that the proposed detection technique can detect mining activity instantaneously from the most current in-the-wild cryptojacking malware with an accuracy of 98.97%, in an average of 25.9 milliseconds while using a maximum of 4% of the CPU and 6.5% of RAM, proving that MINOS is highly effective while lightweight, fast, and computationally inexpensive.

View More Papers

Refining Indirect Call Targets at the Binary Level

Sun Hyoung Kim (Penn State), Cong Sun (Xidian University), Dongrui Zeng (Penn State), Gang Tan (Penn State)

Read More

Evaluating Personal Data Control In Mobile Applications Using Heuristics

Alain Giboin (UCA, INRIA, CNRS, I3S), Karima Boudaoud (UCA, CNRS, I3S), Patrice Pena (Userthink), Yoann Bertrand (UCA, CNRS, I3S), Fabien Gandon (UCA, INRIA, CNRS, I3S)

Read More

V2X Security: Status and Open Challenges

Jonathan Petit (Director Of Engineering at Qualcomm Technologies) Dr. Jonathan Petit is Director of Engineering at Qualcomm Technologies, Inc., where he leads research in security of connected and automated vehicles (CAV). His team works on designing security solutions, but also develops tools for automotive penetration testing and builds prototypes. His recent work on misbehavior protection…

Read More

icLibFuzzer: Isolated-context libFuzzer for Improving Fuzzer Comparability

Yu-Chuan Liang, Hsu-Chun Hsiao (National Taiwan University)

Read More