Faraz Naseem (Florida International University), Ahmet Aris (Florida International University), Leonardo Babun (Florida International University), Ege Tekiner (Florida International University), A. Selcuk Uluagac (Florida International University)

Emerging WebAssembly(Wasm)-based cryptojacking malware covertly uses the computational resources of users without their consent or knowledge. Indeed, most victims of this malware are unaware of such unauthorized use of their computing power due to techniques employed by cryptojacking malware authors such as CPU throttling and obfuscation. A number of dynamic analysis-based detection mechanisms exist that aim to circumvent such techniques. However, since these mechanisms use dynamic features, the collection of such features, as well as the actual detection of the malware, require that the cryptojacking malware run for a certain amount of time, effectively mining for that period, and therefore causing significant overhead. To solve these limitations, in this paper, we propose MINOS, a novel, extremely lightweight cryptojacking detection system that uses deep learning techniques to accurately detect the presence of unwarranted Wasm-based mining activity in real-time. MINOS uses an image-based classification technique to distinguish between benign webpages and those using Wasm to implement unauthorized mining. Specifically, the classifier implements a convolutional neural network (CNN) model trained with a comprehensive dataset of current malicious and benign Wasm binaries. MINOS achieves exceptional accuracy with a low TNR and FPR. Moreover, our extensive performance analysis of MINOS shows that the proposed detection technique can detect mining activity instantaneously from the most current in-the-wild cryptojacking malware with an accuracy of 98.97%, in an average of 25.9 milliseconds while using a maximum of 4% of the CPU and 6.5% of RAM, proving that MINOS is highly effective while lightweight, fast, and computationally inexpensive.

View More Papers

NetPlier: Probabilistic Network Protocol Reverse Engineering from Message Traces

Yapeng Ye (Purdue University), Zhuo Zhang (Purdue University), Fei Wang (Purdue University), Xiangyu Zhang (Purdue University), Dongyan Xu (Purdue University)

Read More

Mondrian: Comprehensive Inter-domain Network Zoning Architecture

Jonghoon Kwon (ETH Zürich), Claude Hähni (ETH Zürich), Patrick Bamert (Zürcher Kantonalbank), Adrian Perrig (ETH Zürich)

Read More

Demo #8: Security of Camera-based Perception for Autonomous Driving...

Christopher DiPalma, Ningfei Wang, Takami Sato, and Qi Alfred Chen (UC Irvine)

Read More

Vision-Based Two-Factor Authentication & Localization Scheme for Autonomous Vehicles

Anas Alsoliman, Marco Levorato, and Qi Alfred Chen (UC Irvine)

Read More